用户手册 User Manual

MM32SPIN2x

32 位基于 ARM ® Cortex ® M0 核心的微控制器

版本: 1.19_p

目录

1	存储	器和总线构架	1
	1.1	系统构架	1
	1.2	存储器组织	3
		1.2.1 介绍	3
		1.2.2 存储器映像和寄存器编址	3
	1.3	内置的 SRAM	5
	1.4	闪存存储器概述	5
	1.5	启动配置 (Boot configuration)	5
2	嵌入	式闪存 (FLASH)	7
	2.1	闪存主要特性	7
	2.2	闪存功能描述	7
		2.2.1 闪存结构	7
		2.2.2 FLASH 读操作	8
		2.2.3 Flash 写和擦除操作	9
	2.3	存储保护	5
		2.3.1 主空间写保护 1	5
		2.3.2 选项字节的写保护	5
	2.4	Flash 中断	5
	2.5	选项字节说明	5
	2.6	Flash 寄存器描述	
		2.6.1 闪存访问控制寄存器 (FLASH_ACR)	7
		2.6.2 闪存访问控制寄存器 (FLASH_KEYR)	8
		2.6.3 闪存 OPTKEY 寄存器 (FLASH_OPTKEYR)	
		2.6.4 闪存状态寄存器 (FLASH_SR)	9
		2.6.5 闪存控制寄存器 (FLASH_CR)	
		2.6.6 闪存地址寄存器 (FLASH_AR)	<u>?</u> 1
		2.6.7 选项字节寄存器 (FLASH_OBR)	<u>'</u> 1
		2.6.8 写保护寄存器 (FLASH_WRPR)	2
3	循环	冗余校验计算单元 (CRC)	24
	3.1	CRC 简介	<u>'</u> 4
	3.2	CRC 主要特征	<u>'</u> 4
	3.3	CRC 功能介绍	<u>'</u> 4
	3.4	CRC 寄存器	25
		3.4.1 CRC 数据寄存器 (CRC_DR)	25
		3.4.2 CRC 独立数据寄存器 (CRC_IDR)	25
		3.4.3 CRC 控制寄存器 (CRC_CTRL)	26
4	硬件	徐法 (HWDIV)	27
	4.1	硬件除法简介	27
	4.2	硬件除法主要特征	27
	4.3	硬件除法功能介绍	27
	4.4	硬件除法寄存器	27

			被除数寄存器 (HWDIV_DVDR)	
			除数寄存器 (HWDIV_DVSR)	
			商寄存器 (HWDIV_QUOTR)	
			余数寄存器 (HWDIV_RMDR)	
			HWDIV 状态寄存器 (HWDIV_SR)	
		4.4.6	HWDIV 控制寄存器 (HWDIV_CR)	29
5	硬件	开方 (HS	SQRT)	31
	5.1	硬件开ス	方简介	31
	5.2	硬件开ス	方主要特征	31
	5.3	硬件开ス	方功能介绍	31
	5.4	硬件开ス	方寄存器	31
		5.4.1	被开方数据寄存器 (HSQRT_SQR)	31
		5.4.2	平方根数据寄存器 (HSQRT_RESULT)	32
6	电源	控制 (PV	VR)	33
•	6.1	•	··· <i>y</i>	
	• • •		独立的 A/D 转换器供电和参考电压	
			电池备份区域	
			电压调节器	
	6.2		理器	
	·-		上电复位 (POR) 和掉电复位 (PDR)	
			可编程电压监测器 (PVD)	
	6.3		莫式	
			降低系统时钟	
			外部时钟的控制	
			睡眠模式	
			停机模式	
			待机模式	
	6.4		制寄存器	
			- · · · · ····· 电源控制寄存器 (PWR_CR) · · · · · · · · · · · · · · · · · · ·	
			电源控制/状态寄存器 (PWR CSR)	
7	夕八	寄存器 (I	· · · · · · · · · · · · · · · · · · ·	42
′	音 切 7.1	•	ркг, 介	
			征	
	7.3		何	
	7.5		备份数据寄存器 n(BKP_DRn)(n = 120)	
_				
8				44
	8.1		· · · · · · · · · · · · · · · · · · ·	
			系统复位	
			电源复位	
	8.2		LIGHT HAR	
			HSE 时钟	
		822	HSI 財钟	12

		8.2.3	PLL	48
		8.2.4	LSI 时钟	48
		8.2.5	系统时钟 (SYSCLK) 选择	48
		8.2.6	时钟安全系统 (CSS)	48
		8.2.7	看门狗时钟	49
		8.2.8	时钟输出	49
	8.3	RCC 含	F存器堆与存储器映射描述	49
		8.3.1	时钟控制寄存器 (RCC_CR)	50
		8.3.2	时钟配置寄存器 (RCC_CFGR)	52
		8.3.3	时钟中断寄存器 (RCC_CIR)	54
		8.3.4	APB2 外设复位寄存器 (RCC_APB2RSTR)	57
		8.3.5	APB1 外设复位寄存器 (RCC_APB1RSTR)	58
		8.3.6	AHB 外设时钟使能寄存器 (RCC_AHBENR)	59
		8.3.7	APB2 外设时钟使能寄存器 (RCC_APB2ENR)	61
		8.3.8	APB1 外设时钟使能寄存器 (RCC_APB1ENR)	62
		8.3.9	备份域控制寄存器器 (RCC_BDCR)	64
		8.3.10	控制状态寄存器寄存器 (RCC_CSR)	65
			AHB 外设复位寄存器 (RCC AHBRSTR)	
		8.3.12	系统配置寄存器 (RCC_SYSCFG)	67
			HSI 延迟寄存器 (RCC_HSIDLY)	
			HSE 延迟寄存器 (RCC_HSEDLY)	
9	海田	功能 I/O		70
J			(GFIO) 功能描述	
	9.1	9.1.1	якшь	
		9.1.1	单独的位设置或位清除	
		9.1.2	外部中断/唤醒线	
		9.1.3	复用功能	
		9.1.4	を作りません。	
		9.1.5	GPIO 锁定机制	
		9.1.6	输入配置	
			和八郎直 · · · · · · · · · · · · · · · · · · ·	
		9.1.8 9.1.9	复用功能配置	
			模拟输入配置	
			 投払制入配置 	
	0.0			
	9.2		能 I/O 和调试配置	
		9.2.1		
	0.0	9.2.2	SWD 复用功能重映射	
	9.3		寄存器描述	
		9.3.1	端口配置低寄存器 (GPIOx_CRL)(x = AD)	
		9.3.2	端口配置高寄存器 (GPIOx_CRH)(x = AD)	
		9.3.3	端口输入数据寄存器 (GPIOx_IDR)(x = AD)	
		9.3.4	端口输出数据寄存器 (GPIOx_ODR)(x = AD)	
		9.3.5	端口设置/清除寄存器 (GPIOx_BSRR)(x = AD)	81

		9.3.6	端口位清除寄存器 (GPIOx_BRR)(x = AD)	81
		9.3.7	端口配置锁定寄存器 (GPIOx_LCKR)(x = AD)	82
		9.3.8	端口复用功能低位寄存器 (GPIOx_AFRL)(x = AD)	83
		9.3.9	端口复用功能高位寄存器 (GPIOx_AFRH)(x = AD)	83
10	中断	和事件((EXTI)	85
			· , 量中断控制器	
			中断和异常向量	
	10.2		断/事件控制器 (EXTI)	
			主要特征	
			框图	
			唤醒事件管理	
			功能说明	
			外部中断/事件线路映像	
	10.3		『存器描述	
	10.0		中断屏蔽寄存器 (EXTI_IMR)	
			事件屏蔽寄存器 (EXTI_EMR)	
			上升沿触发选择寄存器 (EXTI RTSR)	
			下降沿触发选择寄存器 (EXTI_FTSR)	
			软件中断事件寄存器 (EXTI_SWIER)	
			软件中断事件寄存器 (EXTI_PR)	
11			(DMA)	95
			简介	
			E要特征	
	11.3		述	
			DMA 处理	
			仲裁器	
			DMA 通道	
			可编程的数据传输宽度,对齐方式和数据大小端	
			错误管理	
			中断	
			DMA 请求映像	
	11.4		F 存器描述	
			DMA 中断状态寄存器 (DMA_ISR)	
			DMA 中断标志清除寄存器 (DMA_IFCR)	
			DMA 通道 x 配置寄存器 (DMA_CCRx) (x = 1···5)	
			DMA 通道 x 传输数量寄存器 (DMA_CNDTRx) (x = 1···5)	
			DMA 通道 x 外设地址寄存器 (DMA_CPARx) (x = 1···5)	
		11.4.6	DMA 通道 x 存储器地址寄存器 (DMA_CMARx) (x = 1····5)	106
12	模拟/	数字转	换 (ADC)	107
	12.1	ADC 介	· · · · · · · · · · · · · · · · · · ·	107
	12.2	ADC 🗎	三要特征	107
			h能描述	107

		12.3.1 ADC 开关控制	108
		12.3.2 通道选择	108
	12.4	ADC 工作模式	108
		12.4.1 单次转换模式	109
		12.4.2 单周期扫描模式	109
		12.4.3 连续扫描模式	110
		12.4.4 DMA 请求	111
	12.5	数据对齐	111
		12.5.1 可编程分辨率	112
		12.5.2 可编程采样时间	112
	12.6	外部触发转换	112
	12.7	温度传感器	113
	12.8	内部基准参考电压	113
	12.9	窗口比较器模式下 AD 转换结果监控	113
	12.10	0 ADC 寄存器描述	113
		12.10.1 A/D 数据寄存器 (ADC_ADDATA)	114
		12.10.2 A/D 配置寄存器 (ADC_ADCFG)	
		12.10.3 A/D 控制寄存器 (ADC ADCR)	116
		12.10.4 A/D 通道选择寄存器 (ADC_ADCHS)	119
		12.10.5 A/D 窗口比较寄存器 (ADC_ADCMPR)	
		12.10.6 A/D 状态寄存器 (ADC ADSTA)	
		12.10.7 A/D 数据寄存器 (ADC_ADDR0~11, 14~15)	121
		12.10.7 A/D 数据寄存器 (ADC_ADDR0 ~ 11, 14 ~ 15)	
13	比较	12.10.8 A/D 扩展状态寄存器 (ADC_ADSTA_EXT)	122
13		12.10.8 A/D 扩展状态寄存器 (ADC_ADSTA_EXT)	122 12 4
13	13.1	12.10.8 A/D 扩展状态寄存器 (ADC_ADSTA_EXT)	122 124
13	13.1 13.2	12.10.8 A/D 扩展状态寄存器 (ADC_ADSTA_EXT)	122 124 124 124
13	13.1 13.2	12.10.8 A/D 扩展状态寄存器 (ADC_ADSTA_EXT) 器 (COMP) COMP 简介 比较器主要特征 比较器功能描述	122 124 124 124
13	13.1 13.2	12.10.8 A/D 扩展状态寄存器 (ADC_ADSTA_EXT)	122 124 124 124 124
13	13.1 13.2	12.10.8 A/D 扩展状态寄存器 (ADC_ADSTA_EXT) 器 (COMP) COMP 简介 比较器主要特征 比较器功能描述 13.3.1 简介 13.3.2 时钟	122 124 124 124 124 125
13	13.1 13.2	12.10.8 A/D 扩展状态寄存器 (ADC_ADSTA_EXT) 器 (COMP) COMP 简介 比较器主要特征 比较器功能描述 13.3.1 简介 13.3.2 时钟 13.3.3 比较器开关控制	122 124 124 124 124 125 125
13	13.1 13.2	12.10.8 A/D 扩展状态寄存器 (ADC_ADSTA_EXT) 器 (COMP) COMP 简介 比较器主要特征 比较器功能描述 13.3.1 简介 13.3.2 时钟 13.3.3 比较器开关控制 13.3.4 比较器输入和输出	122 124 124 124 124 125 125
13	13.1 13.2	12.10.8 A/D 扩展状态寄存器 (ADC_ADSTA_EXT) 器 (COMP) COMP 简介 比较器主要特征 比较器功能描述 13.3.1 简介 13.3.2 时钟 13.3.3 比较器开关控制 13.3.5 比较器输入和输出 13.3.5 比较器通道选择	122 124 124 124 125 125 125
13	13.1 13.2	12.10.8 A/D 扩展状态寄存器 (ADC_ADSTA_EXT) 器 (COMP) COMP 简介 比较器主要特征 比较器功能描述 13.3.1 简介 13.3.2 时钟 13.3.3 比较器开关控制 13.3.5 比较器输入和输出 13.3.6 中断和唤醒	122 124 124 125 125 125 125 126
13	13.1 13.2	12.10.8 A/D 扩展状态寄存器 (ADC_ADSTA_EXT) 器 (COMP) COMP 简介 比较器主要特征 比较器功能描述 13.3.1 简介 13.3.2 时钟 13.3.3 比较器开关控制 13.3.5 比较器输入和输出 13.3.5 比较器通道选择	122 124 124 125 125 125 125 126 126
13	13.1 13.2	12.10.8 A/D 扩展状态寄存器 (ADC_ADSTA_EXT) 器 (COMP) COMP 简介 比较器主要特征 比较器功能描述 13.3.1 简介 13.3.2 时钟 13.3.3 比较器开关控制 13.3.6 比较器输入和输出 13.3.6 比较器通道选择 13.3.6 中断和唤醒 13.3.7 功耗模式 13.3.8 比较器锁定机制	1224 124 124 125 125 125 126 126 126
13	13.1 13.2 13.3	12.10.8 A/D 扩展状态寄存器 (ADC_ADSTA_EXT) 器 (COMP) COMP 简介. 比较器主要特征 比较器功能描述 13.3.1 简介 13.3.2 时钟 13.3.3 比较器开关控制 13.3.4 比较器输入和输出 13.3.5 比较器通道选择 13.3.6 中断和唤醒 13.3.7 功耗模式 13.3.8 比较器锁定机制 13.3.9 迟滞现象	122 124 124 125 125 125 126 126 126 126
13	13.1 13.2 13.3	12.10.8 A/D 扩展状态寄存器 (ADC_ADSTA_EXT) 器 (COMP) COMP 简介 比较器主要特征 比较器功能描述 13.3.1 简介 13.3.2 时钟 13.3.3 比较器开关控制 13.3.4 比较器输入和输出 13.3.5 比较器通道选择 13.3.6 中断和唤醒 13.3.7 功耗模式 13.3.8 比较器锁定机制 13.3.9 迟滞现象 比较器寄存器描述	122 124 124 125 125 125 126 126 126 127
13	13.1 13.2 13.3	12.10.8 A/D 扩展状态寄存器 (ADC_ADSTA_EXT) 器 (COMP) COMP 简介 比较器主要特征 比较器功能描述 13.3.1 简介 13.3.2 时钟 13.3.3 比较器开关控制 13.3.5 比较器输入和输出 13.3.5 比较器通道选择 13.3.6 中断和唤醒 13.3.7 功耗模式 13.3.8 比较器锁定机制 13.3.9 迟滞现象 比较器寄存器描述 13.4.1 比较器控制状态寄存器 (COMPx_CSR)(x=4,5)	122 124 124 125 125 125 126 126 127 127
13	13.1 13.2 13.3	12.10.8 A/D 扩展状态寄存器 (ADC_ADSTA_EXT) 器 (COMP) COMP 简介 比较器主要特征 比较器功能描述 13.3.1 简介 13.3.2 时钟 13.3.3 比较器ਜ关控制 13.3.4 比较器输入和输出 13.3.5 比较器通道选择 13.3.6 中断和唤醒 13.3.7 功耗模式 13.3.8 比较器锁定机制 13.3.9 迟滞现象 比较器寄存器描述 13.4.1 比较器控制状态寄存器 (COMPx_CSR)(x=4, 5) 13.4.2 比较器控制状态寄存器 (COMPx_CSR)(x=1, 2, 3)	1224 124 124 125 125 125 126 126 127 127 127
13	13.1 13.2 13.3	12.10.8 A/D 扩展状态寄存器 (ADC_ADSTA_EXT) 器 (COMP) COMP 简介 比较器主要特征 比较器功能描述 13.3.1 简介 13.3.2 时钟 13.3.3 比较器开关控制 13.3.5 比较器输入和输出 13.3.5 比较器通道选择 13.3.6 中断和唤醒 13.3.7 功耗模式 13.3.8 比较器锁定机制 13.3.9 迟滞现象 比较器寄存器描述 13.4.1 比较器控制状态寄存器 (COMPx_CSR)(x=4,5)	122 124 124 125 125 125 126 126 127 127 127 130
	13.1 13.2 13.3	12.10.8 A/D 扩展状态寄存器 (ADC_ADSTA_EXT) 器 (COMP) COMP 简介 比较器主要特征 比较器功能描述 13.3.1 简介 13.3.2 时钟 13.3.3 比较器册关控制 13.3.4 比较器输入和输出 13.3.5 比较器通道选择 13.3.6 中断和唤醒 13.3.7 功耗模式 13.3.8 比较器锁定机制 13.3.9 迟滞现象 比较器寄存器描述 13.4.1 比较器控制状态寄存器 (COMPx_CSR)(x=4, 5) 13.4.2 比较器控制状态寄存器 (COMPx_CSR)(x=1, 2, 3) 13.4.3 比较器外部参考电压寄存器 (COMP_CRV) 13.4.4 比较器轮询寄存器 (COMPx_POLL)(x=4, 5)	122 124 124 125 125 125 126 126 127 127 130 132
	13.1 13.2 13.3 13.4 运算	12.10.8 A/D 扩展状态寄存器 (ADC_ADSTA_EXT) 器 (COMP) COMP 简介 比较器主要特征 比较器功能描述 13.3.1 简介 13.3.2 时钟 13.3.3 比较器开关控制 13.3.5 比较器通道选择 13.3.6 中断和唤醒 13.3.7 功耗模式 13.3.8 比较器锁定机制 13.3.9 迟滞现象 比较器寄存器描述 13.4.1 比较器控制状态寄存器 (COMPx_CSR)(x=4, 5) 13.4.2 比较器控制状态寄存器 (COMPx_CSR)(x=1, 2, 3) 13.4.3 比较器外部参考电压寄存器 (COMP_CRV)	122 124 124 125 125 125 126 126 127 127 130 132 133

	14.2	运算放大器主要特征
	14.3	运算放大器功能描述
		14.3.1 时钟
		14.3.2 运算放大器寄存器描述
		14.3.3 OPAMP_CSR
15	高级	控制定时器 (TIM1/8) 137
	15.1	TIM1/8 简介
	15.2	主要特征
	15.3	功能描述
		15.3.1 时基单元
		15.3.2 计数模式
		15.3.3 重复计数器149
		15.3.4 时钟选择
		15.3.5 捕获/比较通道
		15.3.6 输入捕获模式
		15.3.7 PWM 输入模式
		15.3.8 强制输出模式
		15.3.9 输出比较模式
		15.3.10 PWM 模式
		15.3.11 互补输出和死区插入
		15.3.12 使用刹车功能
		15.3.13 在外部事件时清除 OCxREF 信号
		15.3.14 产生六步 PWM 输出
		15.3.15 单脉冲模式
		15.3.16 编码器接口模式
		15.3.17 定时器输入异或功能
		15.3.18 与霍尔传感器的接口
		15.3.19 TIMx 定时器和外部触发的同步
		15.3.20 定时器同步
		15.3.21 调试模式
	15.4	寄存器描述
		15.4.1 控制寄存器 1(TIMx_CR1)
		15.4.2 控制寄存器 2(TIMx_CR2)
		15.4.3 从模式控制寄存器 (TIMx_SMCR)
		15.4.4 DMA/中断使能寄存器 (TIMX_DIER)
		15.4.5 状态寄存器 (TIMx_SR)
		15.4.6 事件产生寄存器 (TIMx_EGR)
		15.4.7 捕获/比较模式寄存器 1(TIMx_CCMR1)
		15.4.8 捕获/比较模式寄存器 2(TIMx_CCMR2)
		15.4.9 捕获/比较使能寄存器 (TIMx_CCER)
		15.4.10 计数器 (TIMx_CNT)
		15.4.11 预分频器 (TIMx_PSC)
		15.4.12 自动装载寄存器 (TIMx ARR) 197

		15.4.13 重复计数寄存器 (TIMx_RCR)	197
		15.4.14 捕获/比较寄存器 1(TIMx_CCR1)	198
		15.4.15 捕获/比较寄存器 2(TIMx_CCR2)	199
		15.4.16 捕获/比较寄存器 3(TIMx_CCR3)	199
		15.4.17 捕获/比较寄存器 4(TIMx_CCR4)	200
		15.4.18 刹车和死区寄存器 (TIMx_BDTR)	200
		15.4.19 DMA 控制寄存器 (TIMx_DCR)	203
		15.4.20 连续模式的 DMA 地址 (TIMx_DMAR)	204
		15.4.21 捕获/比较模式寄存器 3(TIMx_CCMR3)	205
		15.4.22 捕获/比较寄存器 5(TIMx_CCR5)	205
16	16 位	过通用定时器 (TIMx16 Bit)	207
	16.1	TIMx 简介	207
	16.2	TIMx 主要功能	207
	16.3	TIMx 功能描述	208
		16.3.1 时基单元	208
		16.3.2 计数模式	210
		16.3.3 时钟选择	218
		16.3.4 捕获/比较通道	222
		16.3.5 输入捕获模式	224
		16.3.6 PWM 输入模式	224
		16.3.7 强制输出模式	225
		16.3.8 输出比较模式	225
		16.3.9 PWM 模式	226
		16.3.10 单脉冲模式	229
		16.3.11 在外部事件时清除 OCxREF 信号	231
		16.3.12 编码器接口模式	231
		16.3.13 定时器输入异或功能	234
		16.3.14 定时器和外部触发的同步	234
		16.3.15 定时器同步	237
		16.3.16 调试模式	241
	16.4	TIMx 寄存器描述	241
		16.4.1 控制寄存器 1(TIMx_CR1)	242
		16.4.2 控制寄存器 2(TIMx_CR2)	244
		16.4.3 从模式控制寄存器 (TIMx_SMCR)	245
		16.4.4 DMA/中断使能寄存器 (TIMx_DIER)	248
		16.4.5 状态寄存器 (TIMx_SR)	250
		16.4.6 事件产生寄存器 (TIMx_EGR)	251
		16.4.7 捕获/比较模式寄存器 1(TIMx_CCMR1)	252
		16.4.8 捕获/比较模式寄存器 2(TIMx_CCMR2)	256
		16.4.9 捕获/比较使能寄存器 (TIMx_CCER)	258
		16.4.10 计数器 (TIMx_CNT)	260
		16.4.11 预分频器 (TIMx_PSC)	260
		16.4.12 自动装载寄存器 (TIMx_ARR)	260

		16.4.13 捕获/比较寄存器 1(TIMx_CCR1)	260
		16.4.14 捕获/比较寄存器 2(TIMx_CCR2)	261
		16.4.15 捕获/比较寄存器 3(TIMx_CCR3)	262
		16.4.16 捕获/比较寄存器 4(TIMx_CCR4)	262
		16.4.17 DMA 控制寄存器 (TIMx_DCR)	263
		16.4.18 连续模式的 DMA 地址 (TIMx_DMAR)	264
17	32 位	z通用定时器 (TIMx32 Bit)	265
	17.1	TIMx 简介	265
	17.2	TIMx 主要功能	265
	17.3	TIMx 功能描述	266
		17.3.1 时基单元	266
		17.3.2 计数模式	268
		17.3.3 时钟选择	276
		17.3.4 捕获/比较通道	280
		17.3.5 输入捕获模式	282
		17.3.6 PWM 输入模式	282
		17.3.7 强制输出模式	283
		17.3.8 输出比较模式	283
		17.3.9 PWM 模式	284
		17.3.10 单脉冲模式	287
		17.3.11 在外部事件时清除 OCxREF 信号	289
		17.3.12 编码器接口模式	289
		17.3.13 定时器输入异或功能	292
		17.3.14 定时器和外部触发的同步	292
		17.3.15 定时器同步	295
		17.3.16 调试模式	299
	17.4	TIMx 寄存器描述	299
		17.4.1 控制寄存器 1(TIMx_CR1)	300
		17.4.2 控制寄存器 2(TIMx_CR2)	302
		17.4.3 从模式控制寄存器 (TIMx_SMCR)	303
		17.4.4 DMA/中断使能寄存器 (TIMx_DIER)	306
		17.4.5 状态寄存器 (TIMx_SR)	308
		17.4.6 事件产生寄存器 (TIMx_EGR)	309
		17.4.7 捕获/比较模式寄存器 1(TIMx_CCMR1)	310
		17.4.8 捕获/比较模式寄存器 2(TIMx_CCMR2)	314
		17.4.9 捕获/比较使能寄存器 (TIMx_CCER)	316
		17.4.10 计数器 (TIMx_CNT)	318
		17.4.11 预分频器 (TIMx_PSC)	318
		17.4.12 自动装载寄存器 (TIMx_ARR)	318
		17.4.13 捕获/比较寄存器 1(TIMx_CCR1)	319
		17.4.14 捕获/比较寄存器 2(TIMx_CCR2)	319
		17.4.15 捕获/比较寄存器 3(TIMx_CCR3)	320
		17 4 16 捕获/比较寄存器 4(TIMx CCR4)	321

		17.4.17 DMA 控制寄存器 (TIMx_DCR)	321
		17.4.18 连续模式的 DMA 地址 (TIMx_DMAR)	322
18	基本	定时器 (TIM14) 3	324
	18.1	TIM14 简介	324
	18.2	TIM14 主要特征	324
	18.3	TIM14 功能描述	325
		18.3.1 时基单元	325
		18.3.2 计数模式	326
		18.3.3 重复计数器	329
		18.3.4 时钟源	330
		18.3.5 捕获/比较通道	331
		18.3.6 输入捕获模式	333
		18.3.7 强制输出模式	333
		18.3.8 输出比较模式	334
		18.3.9 PWM 模式	335
		18.3.10 调试模式	336
	18.4	TIM14 寄存器描述	336
		18.4.1 控制寄存器 1(TIM14_CR1)	336
		18.4.2 中断使能寄存器 (TIM14_DIER)	337
		18.4.3 状态寄存器 (TIM14_SR)	337
		18.4.4 事件产生寄存器 (TIM14_EGR)	338
		18.4.5 捕获/比较模式寄存器 1(TIM14_CCMR1)	339
		18.4.6 捕获/比较使能寄存器 (TIM14_CCER)	342
		18.4.7 计数器 (TIM14_CNT)	343
		18.4.8 预分频器 (TIM14_PSC)	
		18.4.9 自动装载寄存器 (TIM14_ARR)	
		18.4.10 重复计数寄存器 (TIM14_RCR)	
		18.4.11 捕获/比较寄存器 1(TIM14_CCR1)	
		18.4.12 刹车和死区寄存器 (TIM14_BDTR)	345
19	基本	定时器 (TIM16/17)	346
	19.1	TIM16/17 简介	346
	19.2	主要特征	346
	19.3	功能描述	347
		19.3.1 时基单元	347
		19.3.2 计数模式	348
		19.3.3 重复计数器	
		19.3.4 时钟源	352
		19.3.5 捕获/比较通道	353
		19.3.6 输入捕获模式	
		19.3.7 强制输出模式	
		19.3.8 输出比较模式	
		19.3.9 PWM 模式	
		19.3.10 互补输出和死区插入	358

		19.3.11 使用刹车功能	. 360
		19.3.12 单脉冲模式	. 361
		19.3.13 调试模式	. 363
	19.4	寄存器描述	. 363
		19.4.1 TIM16/17 控制寄存器 1(TIM16/17_CR1)	. 363
		19.4.2 TIM16/17 控制寄存器 2(TIM16/17_CR2)	. 364
		19.4.3 TIM16/17 中断允许寄存器 (TIM16/17_DIER)	. 365
		19.4.4 TIM16/17 状态寄存器 (TIM16/17_SR)	. 366
		19.4.5 TIM16/17 事件产生寄存器 1(TIM16/17_EGR)	. 368
		19.4.6 TIM16/17 捕获/比较模式寄存器 1(TIM16/17_CCMR1)	. 369
		19.4.7 TIM16/17 捕获/比较使能寄存器 (TIM16/17_CCER)	. 372
		19.4.8 TIM16/17 计数器 (TIM16/17_CNT)	. 375
		19.4.9 TIM16/17 预分频寄存器 (TIM16/17_PSC)	. 375
		19.4.10 TIM16/17 自动重装寄存器 (TIM16/17_ARR)	. 375
		19.4.11 TIM16/17 重复计数寄存器 (TIM16/17_RCR)	. 375
		19.4.12 TIM16/17 捕获/比较寄存器 1(TIM16/17_CCR1)	. 376
		19.4.13 TIM16/17 刹车与死区时间寄存器 (TIM16/17_BDTR)	. 376
		19.4.14 TIM16/17 DMA 控制寄存器 (TIM16/17_DCR)	. 379
		19.4.15 TIM16/17 全传输地址寄存器 (TIM16/17_DMAR)	
20	脉冲,	宽度调制 (PWM)	382
20		- De	
		PWM 控制主要特征	
		PWM 控制功能描述	
		自动换相屏蔽	
		电流补偿	
		电流保护	
		PWM 控制寄存器描述	
	20.7	20.7.1 PWM CSR	
		20.7.2 PWM_APMSKR	
		20.7.3 PWM APMDLR	
	WI. 3	-	
21		看门狗 (IWDG)	391
		(IWDG 简介)	
		IWDG 主要性能	
	21.3	IWDG 功能描述	
		21.3.1 硬件看门狗	
		21.3.2 寄存器访问保护	
		21.3.3 调试模式	
	21.4	IWDG 寄存器描述	
		21.4.1 键寄存器 (IWDG_KR)	
		21.4.2 预分频寄存器 (IWDG_PR)	
		21.4.3 重装载寄存器 (IWDG_RLR)	
		21.4.4 状态寄存器 (IWDG_SR)	
		21.4.5 IWDG 控制寄存器 (IWDG CR)	. 395

22	窗口看门狗 (WWDG)	397
	22.1 WWDG 简介	. 397
	22.2 WWDG 主要特征	. 397
	22.3 WWDG 功能描述	. 397
	22.4 如何编写看门狗超时程序	. 398
	22.5 调试模式	. 399
	22.6 WWDG 寄存器描述	. 400
	22.6.1 控制寄存器 (WWDG_CR)	. 400
	22.6.2 配置寄存器 (WWDG_CFGR)	. 400
	22.6.3 状态寄存器 (WWDG_SR)	. 401
23	串行外设接口 (SPI)	402
	23.1 SPI 简述	. 402
	23.2 主要特征	. 402
	23.3 SPI 功能描述	. 402
	23.3.1 概述	. 402
	23.3.2 SPI 从模式	. 407
	23.3.3 SPI 主模式	. 407
	23.3.4 状态标志	. 408
	23.3.5 波特率设置	. 409
	23.3.6 利用 DMA 的 SPI 通信	. 409
	23.4 寄存器堆和存储器映射描述	. 409
	23.4.1 发送数据寄存器(SPI_TXREG)	. 410
	23.4.2 接收数据寄存器(SPI_RXREG)	. 410
	23.4.3 当前状态寄存器(SPI_CSTAT)	. 410
	23.4.4 中断状态寄存器(SPI_INTSTAT)	. 411
	23.4.5 中断使能寄存器(SPI_INTEN)	. 413
	23.4.6 中断清除寄存器(SPI_INTCLR)	. 414
	23.4.7 全局控制寄存器(SPI_GCTL)	. 415
	23.4.8 通用控制寄存器(SPI_CCTL)	
	23.4.9 波特率发生器 (SPI_SPBRG)	
	23.4.10 接收数据个数寄存器(SPI_RXDNR)	
	23.4.11 从机片选寄存器(SPI_NSSR)	
	23.4.12 数据控制寄存器(SPI_EXTCTL)	. 419
24	I2C 接口 (I2C)	421
	24.1 I2C 简介	. 421
	24.2 I2C 主要特征	. 421
	24.3 I2C 协议	. 421
	24.3.1 起始和停止条件	. 421
	24.3.2 从机寻址协议	. 422
	24.3.3 发送和接收协议	
	24.3.4 发送缓冲管理以及起始、停止和重复起始条件产生	. 425
	24.3.5 多个主机仲裁	. 426
	24.3.6 时钟同步	427

	24.4	I2C 工作模式	428
		24.4.1 从模式	428
		24.4.2 主模式	430
		24.4.3 I2C 中止传输	431
	24.5	利用 DMA 通信	431
	24.6	I2C 中断	432
	24.7	I2C 寄存器描述	433
		24.7.1 I2C 控制寄存器(I2C_CR)	434
		24.7.2 I2C 目标地址寄存器(I2C_TAR)	436
		24.7.3 I2C 从机地址寄存器(I2C_SAR)	437
		24.7.4 I2C 数据命令寄存器(I2C_DR)	437
		24.7.5 标准模式 I2C 时钟高电平计数寄存器(I2C_SSHR)	438
		24.7.6 标准模式 I2C 时钟低电平计数寄存器(I2C_SSLR)	438
		24.7.7 快速模式 I2C 时钟高电平计数寄存器(I2C_FSHR)	438
		24.7.8 快速模式 I2C 时钟低电平计数寄存器(I2C_FSLR)	439
		24.7.9 I2C 中断状态寄存器(I2C_ISR)	
		24.7.10 I2C 中断屏蔽寄存器(I2C_IMR)	439
		24.7.11 I2C RAW 中断寄存器(I2C_RAWISR)	440
		24.7.12 I2C 接收阈值(I2C_RXTLR)	442
		24.7.13 I2C 发送阈值(I2C_TXTLR)	442
		24.7.14 I2C 组合和独立中断清除寄存器(I2C_ICR)	442
		24.7.15 I2C 清除 RX_UNDER 中断寄存器(I2C_RX_UNDER)	
		24.7.16 I2C 清除 RX_OVER 中断寄存器(I2C_RX_OVER)	
		24.7.17 I2C 清除 TX_OVER 中断寄存器(I2C_TX_OVER)	
		24.7.18 I2C 清除 RD_REQ 中断寄存器(I2C_RD_REQ)	
		24.7.19 I2C 清除 TX_ABRT 中断寄存器(I2C_TX_ABRT)	
		24.7.20 I2C 清除 RX_DONE 中断寄存器(I2C_RX_DONE)	
		24.7.21 I2C 清除 ACTIVITY 中断寄存器(I2C_ACTIV)	
		24.7.22 I2C 清除 STOP_DET 中断寄存器(I2C_STOP)	
		24.7.23 I2C 清除 START_DET 中断寄存器(I2C_START)	
		24.7.24 I2C 清除 GEN_CALL 中断寄存器(I2C_GC)	
		24.7.25 I2C 使能寄存器(I2C_ENR)	
		24.7.26 I2C 状态寄存器(I2C_SR)	
		24.7.27 I2C 发送缓冲水平寄存器(I2C_TXFLR)	
		24.7.28 I2C 接收缓冲水平寄存器(I2C_RXFLR)	
		24.7.29 I2C SDA 保持时间寄存器(I2C_HOLD)	
		24.7.30 I2C DMA 控制寄存器(I2C_DMA)	
		24.7.31 I2C SDA 建立时间寄存器(I2C_SETUP)	
		24.7.32 I2C 广播呼叫 ACK 寄存器(I2C_GCR)	449
25		712 VVX NA (=====)	450
		UART 简介	
		UART 主要特征	
	25.3	UART 功能概述	450

		25.3.1 UART 特性描述	451
		25.3.2 发送器	452
		25.3.3 接收器	453
		25.3.4 9 位数据通信	454
		25.3.5 多处理器通信	455
		25.3.6 单线半双工通信	455
		25.3.7 智能卡	456
		25.3.8 分数波特率发生器	457
		25.3.9 采样	458
		25.3.10 校验控制	458
		25.3.11 硬件流控制	458
		25.3.12 利用 DMA 通信	460
	25.4	UART 中断请求	460
	25.5	UART 寄存器描述	461
		25.5.1 UART 发送数据寄存器(UART_TDR)	461
		25.5.2 UART 接收数据寄存器(UART_RDR)	462
		25.5.3 UART 当前状态寄存器(UART_CSR)	462
		25.5.4 UART 中断状态寄存器(UART_ISR)	463
		25.5.5 UART 中断使能寄存器(UART_IER)	464
		25.5.6 UART 中断清除寄存器(UART_ICR)	465
		25.5.7 UART 全局控制寄存器(UART_GCR)	466
		25.5.8 UART 通用控制寄存器(UART_CCR)	467
		25.5.9 UART 波特率寄存器(UART_BRR)	468
		25.5.10 UART 分数波特率寄存器(UART_FRA)	469
		25.5.11 UART 接收地址寄存器(UART_RXADDR)	469
		25.5.12 UART 接收掩码寄存器(UART_RXMASK)	470
		25.5.13 UART SCR 寄存器(UART_SCR)	470
26	系统	配置控制器 (SYSCFG)	472
		SYSCFG 寄存器描述	
		26.1.1 SYSCFG 配置寄存器(SYSCFG CFGR)	
		26.1.2 外部中断配置寄存器 1 (SYSCFG EXTICR1)	
		26.1.3 外部中断配置寄存器 2 (SYSCFG_EXTICR2)	
		26.1.4 外部中断配置寄存器 3(SYSCFG_EXTICR3)	
		26.1.5 外部中断配置寄存器 4(SYSCFG_EXTICR4)	
77	FIG. //4-	_	476
۷,		电子签名 (Device) 存储器容量寄存器	
	21.1	27.1.1 产品唯一身份标识寄存器 (96 位)	
	27.2	UID 寄存器描述	
	۷. ۱	27.2.1 唯一标识码 (UID1)	
		27.2.1 唯一标识码 (UID2)	
		27.2.3 唯一标识码 (UID3)	
		27.2.3 唯一标识码 (UID4)	
_		· · · ·	
20	"国?予.	去块 (DRG)	470

	28.2	引脚分布和调试端口脚	480
		28.2.1 SWD 调试端口脚	
		28.2.2 SWD 脚上的内部上拉和下拉	480
	28.3	ID 代码和锁定机制	480
		28.3.1 微控制器设备 ID 编码	480
		28.3.2 Cortex JEDEC-106 ID 代码	481
		28.3.3 Cortex JEDEC-106 ID 代码	481
	28.4	SW 调试端口	481
		28.4.1 SW 协议介绍	481
		28.4.2 SW 协议序列	482
		28.4.3 SW-DP 状态机(Reset, idle states, ID code)	482
		28.4.4 DP 和 AP 读/写访问	483
		28.4.5 SW-DP 寄存器	483
		28.4.6 SW-AP 寄存器	484
	28.5	MCU 调试模块(MCUDBG)	484
		28.5.1 低功耗模式的调试支持	484
		28.5.2 支持定时器、看门狗	484
		28.5.3 调试 MCU 配置寄存器	484
	28.6	DBG 寄存器描述	484
		28.6.1 DBG 控制寄存器 (DBG_CR)	485
29	修改	记录	487

插图

1	系统架构	2
2	编程流程	10
3	Flash 寄存器页擦除流程	11
4	Flash 寄存器整片擦除流程	12
5	选项字节编程流程	13
6	选项字节擦除流程	14
7	CRC 计算单元框图	24
8	电源框图	33
9	上电复位和掉电复位的波形图	34
10	PVD 的阈值	35
11	复位电路	45
12	时钟树	46
13	时钟源	47
14	I/O 端口位的基本结构	71
15	输入浮空/上拉/下拉配置	73
16	输出配置	74
17	复用功能配置	75
18	高阻抗的模拟输入配置	76
19	外部中断/事件控制器框图	88
20	外部中断通用 I/O 映像	90
21	DMA 框图	96
22	外设 DMA 请求映射	00
23	ADC 框图	80
24	单次转换模式时序图	09
25	单周期扫描下使能通道转换时序图 (通道方向从低到高)	10
26	单周期扫描下使能通道转换时序图 (通道方向从高到低)	10
27	连续扫描模式使能通道转换时序图 (通道方向由低到高)	111
28	连续扫描模式使能通道转换时序图 (通道方向由高到低)	111
29	数据对齐方式	12
30	比较器框图	25
31	比较器的迟滞现象	27
32	高级控制定时器框图	38
33	当预分频器的参数从 1 变到 2 时,计数器的时序图	39
34	当预分频器的参数从 1 变到 4 时,计数器的时序图	40
35	计数器时序图,内部时钟分频因子为11	41
36	计数器时序图,内部时钟分频因子为21	41
37	计数器时序图,内部时钟分频因子为41	41
38	计数器时序图,内部时钟分频因子为 N	42
39	计数器时序图, 当 ARPE = 0 时的更新事件 (TIMx_ARR 没有预装入)	42
40	计数器时序图, 当 ARPE = 1 时的更新事件 (预装入了 TIMx_ARR)	43
41	计数器时序图,内部时钟分频因子为11	44
42	计数器时序图,内部时钟分频因子为 2	44

43	计数器时序图,内部时钟分频因子为 4	. 144
44	计数器时序图,内部时钟分频因子为 N	. 145
45	计数器时序图,当没有使用重复计数器时的更新事件	. 145
46	计数器时序图,内部时钟分频因子为 1,TIMx_ARR = 0x6	. 146
47	计数器时序图,内部时钟分频因子为2	. 147
48	计数器时序图,内部时钟分频因子为 4,TIMx_ARR = 0x36	. 147
49	计数器时序图,内部时钟分频因子为 N	. 148
50	计数器时序图, ARPE = 1 时的更新事件 (计数器下溢)	. 148
51	计数器时序图, ARPE = 1 时的更新事件 (计数器溢出)	. 149
52	不同模式下更新速率的例子,及 TIMx_RCR 的寄存器设置	. 150
53	一般模式下的控制电路,内部时钟分频因子为 1	. 151
54	TI2 外部时钟连接例子	. 151
55	外部时钟模式 1 下的控制电路	. 152
56	外部触发输入框图	. 152
57	外部时钟模式 2 下的控制电路	. 153
58	捕获/比较通道 (如:通道 1 输入部分)	
59	捕获/比较通道 1 的主电路	
60	捕获/比较通道的输出部分 (通道 1 至 3)	. 155
61	捕获/比较通道的输出部分 (通道 4)	. 155
62	PWM 输入模式时序	. 157
63	输出比较模式,翻转 OC1	
64	边沿对齐的 PWM 波形 (ARR = 8)	. 159
65	中央对齐的 PWM 波形 (APR = 8)	
66	带死区插入的互补输出	
67	死区波形延迟大于负脉冲	. 162
68	死区波形延迟大于正脉冲	
69	响应刹车的输出	
70	清除 TIMx 的 OCxREF	. 165
71	产生六步 PWM, 使用 COM 的例子 (OSSR = 1)	. 166
72	单脉冲模式的例子	
73	编码器模式下的计数器操作实例	
74	IC1FP1 反相的编码器接口模式实例	
75	霍尔传感器接口的实例	
76	复位模式下的控制电路	
77	门控模式下的控制电路	
78	触发器模式下的控制电路	
79	外部时钟模式 2 +触发模式下的控制电路	
80	通用定时器框图	
81	当预分频器的参数从 1 变到 2 时,计数器的时序图	
82	当预分频器的参数从 1 变到 4 时,计数器的时序图	
83	计数器时序图,内部时钟分频因子为1	
84	计数器时序图,内部时钟分频因子为2	
85	计数器时序图,内部时钟分频因子为 4	
86	计数器时序图,内部时钟分频因子为 N	. 212

87	计数器时序图,当 $ARPE = 0$ 时的更新事件 $(TIMx_ARR)$ 没有预装入 $(TIMx_ARR)$ 没有预装入 $(TIMx_ARR)$. 212
88	计数器时序图, 当 ARPE = 1 时的更新事件 (预装入了 TIMx_ARR)	. 213
89	计数器时序图,内部时钟分频因子为1	. 214
90	计数器时序图,内部时钟分频因子为2	. 214
91	计数器时序图,内部时钟分频因子为4	. 214
92	计数器时序图,内部时钟分频因子为 N	. 215
93	计数器时序图,当没有使用重复计数器时的更新事件	. 215
94	计数器时序图,内部时钟分频因子为 1,TIMx_ARR = 0x6	. 216
95	计数器时序图,内部时钟分频因子为2	. 216
96	计数器时序图,内部时钟分频因子为 4,TIMx_ARR = 0x36	. 217
97	计数器时序图,内部时钟分频因子为 N	. 217
98	计数器时序图, ARPE = 1 时的更新事件 (计数器下溢)	. 218
99	计数器时序图, ARPE = 1 时的更新事件 (计数器溢出)	. 218
100	一般模式下的控制电路,内部时钟分频因子为 1	. 219
101	TI2 外部时钟连接例子	. 219
102	外部时钟模式 1 下的控制电路	. 220
103	外部触发输入框图	. 221
104	外部时钟模式 2 下的控制电路	. 221
105	捕获/比较通道 (如:通道 1 输入部分)	. 222
106	捕获/比较通道 1 的主电路	. 223
107	捕获/比较通道的输出部分 (通道 1)	. 223
108	捕获/比较通道的输出部分 (通道 1)	. 225
109	输出比较模式,翻转 OC1	. 226
110	边沿对齐的 PWM 波形 (ARR = 8)	. 228
111	中央对齐的 PWM 波形 (APR = 8)	. 229
112	单脉冲模式的例子	. 230
113	清除 TIMx 的 OCxREF	. 231
114	编码器模式下的计数器操作实例	. 233
115	IC1FP1 反相的编码器接口模式实例	. 233
116	复位模式下的控制电路	. 234
117	门控模式下的控制电路	. 235
118	触发器模式下的控制电路	. 236
119	外部时钟模式 2 + 触发模式下的控制电路	
120	主/从定时器的例子	
121	定时器 1 的 OC1REF 控制定时器 2	
122	通过使能定时器 1 可以控制定时器 2	
123	使用定时器 1 的更新触发定时器 2	
124	利用定时器 1 的使能触发定时器 2	
125	使用定时器 1 的 TI1 输入触发定时器 1 和定时器 2	
126	通用定时器框图	
127	当预分频器的参数从 1 变到 2 时,计数器的时序图	
129	计数器时序图,内部时钟分频因子为1	. 269
130	计数界时序图 内部时钟分频因子为 2	260

131	计数器时序图,内部时钟分频因子为4	. 269
132	计数器时序图,内部时钟分频因子为 N	. 270
133	计数器时序图,当 ARPE = 0 时的更新事件 (TIMx_ARR 没有预装入)	. 270
134	计数器时序图, 当 ARPE = 1 时的更新事件 (预装入了 TIMx_ARR)	. 271
135	计数器时序图,内部时钟分频因子为1	. 272
136	计数器时序图,内部时钟分频因子为2	. 272
137	计数器时序图,内部时钟分频因子为4	. 272
138	计数器时序图,内部时钟分频因子为 N	. 273
139	计数器时序图,当没有使用重复计数器时的更新事件	. 273
140	计数器时序图,内部时钟分频因子为 1, TIMx_ARR = 0x6	. 274
141	计数器时序图,内部时钟分频因子为2	. 274
142	计数器时序图,内部时钟分频因子为 4, TIMx_ARR = 0x36	. 275
143	计数器时序图,内部时钟分频因子为 N	. 275
144	计数器时序图, ARPE = 1 时的更新事件 (计数器下溢)	. 276
145	计数器时序图, ARPE = 1 时的更新事件 (计数器溢出)	. 276
146	一般模式下的控制电路,内部时钟分频因子为 1	. 277
147	TI2 外部时钟连接例子	. 277
148	外部时钟模式 1 下的控制电路	. 278
149	外部触发输入框图	. 279
150	外部时钟模式 2 下的控制电路	. 279
151	捕获/比较通道 (如: 通道 1 输入部分)	. 280
152	捕获/比较通道 1 的主电路	. 281
153	捕获/比较通道的输出部分 (通道 1)	. 281
154	捕获/比较通道的输出部分 (通道 1)	. 283
155	输出比较模式,翻转 OC1	. 284
156	边沿对齐的 PWM 波形 (ARR = 8)	. 286
157	中央对齐的 PWM 波形 (APR = 8)	. 287
158	单脉冲模式的例子	. 288
159	清除 TIMx 的 OCxREF	. 289
160	编码器模式下的计数器操作实例	. 291
161	IC1FP1 反相的编码器接口模式实例	. 291
162	复位模式下的控制电路	. 292
163	门控模式下的控制电路	. 293
164	触发器模式下的控制电路	. 294
165	外部时钟模式 2 + 触发模式下的控制电路	. 295
166	主/从定时器的例子	. 295
167	定时器 1 的 OC1REF 控制定时器 2	. 296
168	通过使能定时器 1 可以控制定时器 2	. 297
169	使用定时器 1 的更新触发定时器 2	. 298
170	利用定时器 1 的使能触发定时器 2	. 298
171	使用定时器 1 的 TI1 输入触发定时器 1 和定时器 2	. 299
172	基本定时器框图	. 325
173	当预分频器的参数从 1 变到 2 时,计数器的时序图	. 326
174	当预分频器的参数从 1 变到 4 时、计数器的时序图	326

175	计数器时序图,内部时钟分频因子为 1	27
176	计数器时序图,内部时钟分频因子为23	27
177	计数器时序图,内部时钟分频因子为43	28
178	计数器时序图,内部时钟分频因子为 N	28
179	计数器时序图, 当 ARPE = 0 时的更新事件 (TIM14_ARR 没有预装载)	28
180	计数器时序图, 当 ARPE = 1 时的更新事件 (预装载了 TIM14_ARR)3	29
181	不同模式及不同 TIMx_RCR 寄存器设置下更新速率的例子3	30
182	一般模式下的控制电路,内部时钟分频因子为13	31
183	捕获/比较通道 (如:通道 1 输入部分)3	31
184	捕获/比较通道 1 的主电路	32
185	捕获/比较通道的输出部分 (通道 1)3	32
186	输出比较模式,翻转 OC1	34
187	边沿对齐的 PWM 波形 (ARR = 8)3	35
188	基本定时器 TIM16 和 TIM17 框图3	47
189	当预分频器的参数从 1 变到 2 时,计数器的时序图	48
190	当预分频器的参数从 1 变到 4 时,计数器的时序图	48
191	计数器时序图,内部时钟分频因子为13	49
192	计数器时序图,内部时钟分频因子为23	50
193	计数器时序图,内部时钟分频因子为4	50
194	计数器时序图,内部时钟分频因子为 N	50
195	计数器时序图, 当 ARPE = 0 时的更新事件 (TIMx_ARR 没有预装载)	51
196	计数器时序图, 当 ARPE = 1 时的更新事件 (TIMx_ARR 预装载)3	51
197	不同模式及不同 TIMx_RCR 寄存器设置下更新速率的例子3	52
198	一般模式下的控制电路,内部时钟分频因子为13	53
199	捕获/比较通道如: (通道 1 输入部分)	53
200	捕获/比较通道 1 的主电路	54
201	捕获/比较通道的输出部分 (通道 1)	54
202	输出比较模式,翻转 OC1	57
203	边沿对齐的 PWM 波形 (ARR = 8)3	58
204	带死区插入的互补输出	59
205	死区波形延迟大于负脉冲	59
206	死区波形延迟大于正脉冲	59
207	响应刹车的输出	61
208	单脉冲模式的例子	62
209	PWM 控制模块框图	83
210	PWM 方波驱动示例	84
211	PWM 方波驱动示例	85
212	独立看门狗框图	92
213	看门狗框图	98
214	窗口看门狗时序图	99
215	SPI 框图	03
216	单主和单从应用	04
217	数据时钟时序图	06
218	起始和停止条件 4	22

219	7位的地址格式
220	10 位的地址格式
221	主发送协议
222	主接收协议
223	起始字节传输42
224	DR 寄存器
225	主发送 - Tx FIFO 为空
226	主接收 - Tx FIFO 为空
227	多个主机仲裁
228	多个主机时钟同步
229	I2C 功能框图
230	I2C 接口主机流程图
231	中断机制
232	UART 方框图
233	UART 时序
234	发送时状态位变化
235	UART 方框图
236	UART 方框图
237	RX 引脚采样方案
238	两个 UART 间的硬件流控制
239	RTS 流控制
240	CTS 流控制
241	MM32 系列级别和 CPU 级别的调试框

表格

1	存储器映像	3
2	启动模式	5
3	Flash 模块结构	7
4	Flash 中断请求	15
5	选项字节格式	15
6	选项字节结构	16
7	选项字节说明	16
8	FLASH 寄存器概览	17
9	CRC 寄存器概览	25
10	硬件除法寄存器概览	27
11	硬件开方寄存器概览	31
12	低功耗模式一览	36
13	SLEEP NOW 模式	37
14	SLEEP ON EXIT 模式	37
15	停机模式	38
16	待机模式	38
17	电源控制寄存器概览	39
18	BKP 寄存器概览	42
19	RCC 寄存器概览	49
20	端口位配置表	71
21	输出模式位	71
22	高级定时器 TIM1	76
23	通用定时器 TIM2/3/14/16/17	76
24	UART	77
25	SPI	77
26	12C	77
27	ADC	77
28	其他 I/O 引脚	77
29	调试接口信号	78
30	GPIO 寄存器概览	78
31	本系列产品的向量表	35
32	EXTI 寄存器概览	91
33	可编程的数据传输宽度和大小端操作 (当 PINC = MINC = 1)	98
34	DMA 中断请求)(
35	各个通道的 DMA 请求一览)(
36	DMA 寄存器概览)1
37	ADC 寄存器概览	13
38	比较器寄存器概览	27
39	OPAMP 寄存器概览	35
40	计数方向与编码器信号的关系	36
41	TIM1/8 寄存器概览	74
42	TIMx 内部触发连接	31

43	带刹车功能的互补输出通道 OCx 和 OCxN 的控制位
44	计数方向与编码器信号的关系
45	TIMx 寄存器概览
46	TIMx 内部触发连接
47	标准 Ocx 通道的输出控制位259
48	计数方向与编码器信号的关系290
49	TIMx 寄存器概览
50	TIMx 内部触发连接
51	标准 Ocx 通道的输出控制位
52	TIM14 寄存器概览
53	标准 OCx 通道的输出控制位343
54	TIM16/17 寄存器概览
55	带刹车功能的互补输出通道 OCx 和 OCxN 的控制位
56	PWM 寄存器概览
57	看门狗超时时间 (40KHz 的输入时钟 (LSI))
58	IWDG 寄存器概览
59	WWDG 寄存器概览
60	SPI 状态
61	波特率公式
62	SPI 寄存器概览
63	I2C 首字节
64	中断位的置位和清除
65	I2C 寄存器描述概览
66	DISSLAVE(bit 6) 和 MASTER(bit 0) 配置436
67	UART 中断请求
68	UART 寄存器概览
69	SYSCFG 寄存器概览
70	存储器容量寄存器描述概览476
71	SWJ 调试端口管脚
73	ID 编码
74	ID 编码
75	请求包(8 比特位)
76	请求包(3 比特位)
77	请求包(33 比特位)
79	DBG 寄存器概览
മറ	修改记录 487

1

存储器和总线构架

存储器和总线构架

1.1 系统构架

主系统由以下部分构成:

- 两个驱动单元:
 - CPU 内核系统总线 (S-bus)
 - 通用 DMA
- 三个被动单元:
 - 内部 SRAM
 - 内部闪存存储器
 - AHB 到 APB 的桥 (APBx),它连接所有的 APB 设备

这些都是通过一个多级的 AHB 总线构架相互连接的,如图 1所示:

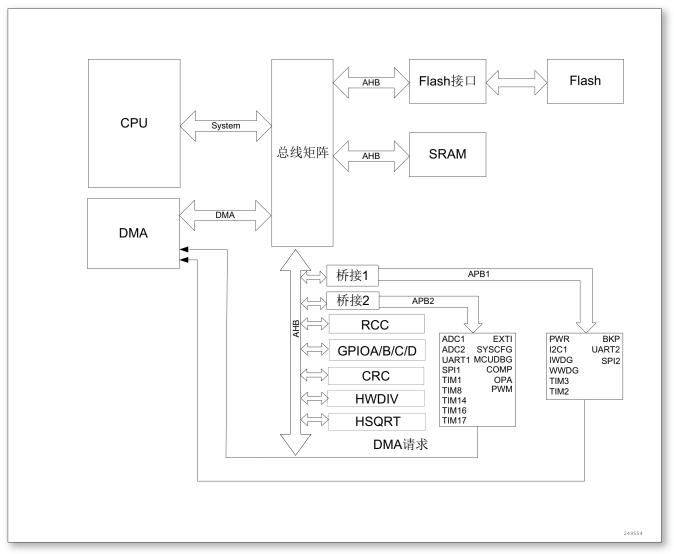


图 1. 系统架构

系统总线

此总线连接 CPU 内核的系统总线 (外设总线) 到总线矩阵,总线矩阵协调着内核和 DMA 间的访问。

DMA 总线

此总线将 DMA 的 AHB 主控接口与总线矩阵相联,总线矩阵协调 CPU 和 DMA 到 SRAM、闪存和外设的访问控制。

总线矩阵 (BusMatrix)

总线矩阵管理着内核系统总线与 DMA 总线的访问仲裁,总线矩阵由主模块总线及从模块总线组成。

AHB 外设通过总线矩阵与系统总线相连,允许 DMA 访问。

AHB 到 APB 桥 (AHB2APB bridges - APB)

AHB 到 APB 桥在 AHB 与 APB 总线间提供同步连接。在每次复位之后,所有的外设时钟都关闭 (除了 SRAM 及 Flash 外)。在用一个外设前,你必须打开相应的 RCC_AHBENR、

RCC_APB2ENR 或 RCC_APB1ENR 寄存器中时钟使能位。

注: 当对 APB 寄存器进行 8 位或者 16 位访问时,该访问会被自动转换成 32 位的访问:桥会自动将 16 位或者 8 位的数据扩展以配合 32 位的宽度。

1.2 存储器组织

1.2.1 介绍

程序存储器,数据存储器,寄存器及 I/O 口统一编址,其线性地址空间达到 4G。

数据字节以小端格式存放在存储器中,一个字里的最低地址字节被认为是该字的最低有效字节,而最高地址字节是最高有效字节。

寻址空间分成 8 块,每块 512MB。其他所有没有分配给片上存储器和外设的存储器空间都是保留的地址空间。详细请参考存储器映像和寄存器编址章节和外设章节。

1.2.2 存储器映像和寄存器编址

存储器映像请参考各外设对应章节中的存储器映像图。

下表给出了所有内置外设的起始地址。

表 1. 存储器映像

总线	编址范围	大小	外设	备注
	0x0000 0000 - 0x0001 FFFF	128 KB	主闪存存储器,系统存储器或是	
	0x0000 0000 - 0x0001 FFFF	120 ND	SRAM 有赖于 BOOT 的配置	
	0x0002 0000 - 0x07FF FFFF	~128 MB	Reserved	
	0x0800 0000 - 0x0800 FFFF	64 KB	Main Flash memory	
Flash	0x0802 0000 - 0x1FFD FFFF	~256 MB	Reserved	
	0x1FFE 0000 - 0x1FFE 01FF	0.5 KB	Reserved	
	0x1FFE 0200 - 0x1FFE 0FFF	3 KB	Reserved	
	0x1FFE 1000 - 0x1FFE 1BFF	3 KB	Reserved	
	0x1FFE 1C00 - 0x1FFF F3FF	~256 MB	Reserved	
	0x1FFF F400 - 0x1FFF F7FF	1 KB	System memory	
	0x1FFF F800 - 0x1FFF F80F	16 B	Option bytes	
	0x1FFF F810 - 0x1FFF FFFF	~2 KB	Reserved	
	0x2000 0000 - 0x2000 2FFF	12 KB	SRAM	
SRAM	0x2000 3000 - 0x2FFF FFFF	~512 MB	Reserved	
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2	
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3	
	0x4000 0800 - 0x4000 0BFF	8 KB	Reserved	
	0x4000 2800 - 0x4000 2BFF	1 KB	ВКР	
APB1	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG	
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG	
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved	
	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2	

总线	编址范围	大小	外设	备注
APB1	0x4000 4000 - 0x4000 43FF	1 KB	Reserved	
	0x4000 4400 - 0x4000 47FF	1 KB	UART2	
	0x4000 4800 - 0x4000 4BFF	3 KB	Reserved	
	0x4000 5400 - 0x4000 57FF	1 KB	I2C1	
	0x4000 5800 - 0x4000 5BFF	1 KB	Reserved	
	0x4000 5C00 - 0x4000 5FFF	1 KB	Reserved	
APB1	0x4000 6000 - 0x4000 63FF	1 KB	Reserved	
	0x4000 6400 - 0x4000 67FF	1 KB	Reserved	
	0x4000 6800 - 0x4000 6BFF	1 KB	Reserved	
	0x4000 6C00 - 0x4000 6FFF	1 KB	Reserved	
	0x4000 7000 - 0x4000 73FF	1 KB	PWR	
	0x4000 7400 - 0x4000 FFFF	35 KB	Reserved	
	0x4001 0000 - 0x4001 03FF	1 KB	SYSCFG	
	0x4001 0400 - 0x4001 07FF	1 KB	EXTI	
	0x4001 0800 - 0x4001 0BFF	1 KB	TIM8	
	0x4001 0C00 - 0x4001 23FF	6 KB	Reserved	
	0x4001 2400 - 0x4001 27FF	1 KB	ADC1	
	0x4001 2800 - 0x4001 2BFF	1 KB	ADC2	
	0x4001 2C00 - 0x4001 2FFF	1 KB	TIM1	
	0x4001 3000 - 0x4001 33FF	1 KB	SPI1	
APB2	0x4001 3400 - 0x4001 37FF	1 KB	DBGMCU	
	0x4001 3800 - 0x4001 3BFF	1 KB	UART1	
	0x4001 3C00 - 0x4001 3FFF	1 KB	COMP	
	0x4001 4000 - 0x4001 43FF	1 KB	TIM14	
	0x4001 4400 - 0x4001 47FF	1 KB	TIM16	
	0x4001 4800 - 0x4001 4BFF	1 KB	TIM17	
	0x4001 4C00 - 0x4001 63FF	6 KB	Reserved	
	0x4001 6400 - 0x4001 67FF	1 KB	PWM	
	0x4001 6800 - 0x4001 7FFF	6 KB	Reserved	
	0x4002 0000 - 0x4002 03FF	1 KB	DMA	
	0x4002 0400 - 0x4002 0FFF	3 KB	Reserved	
	0x4002 1000 - 0x4002 13FF	1 KB	RCC	
	0x4002 1400 - 0x4002 1FFF	3 KB	Reserved	
	0x4002 2000 - 0x4002 23FF	1 KB	 Flash 接口	
AHB	0x4002 2400 - 0x4002 FFFF	55 KB	Reserved	
AND _	0x4003 0000 - 0x4003 03FF	1 KB	HWDIV	
	0x4003 0400 - 0x4003 07FF	1 KB	HSQRT	
	0x4003 0800 - 0x47FF FFFF	~127 MB	Reserved	
	0x4800 0000 - 0x4800 03FF	1 KB	GPIOA	
	0x4800 0400 - 0x4800 07FF	1 KB	GPIOB	
	0x4800 0800 - 0x4800 0BFF	1 KB	GPIOC	

总线	编址范围	大小	外设	备注
AHB	0x4800 0C00 - 0x4800 0FFF	1 KB	GPIOD	
	0x4800 1000 - 0x5FFF FFFF	~383 MB	Reserved	

1.3 内置的 SRAM

它可以以字节(8位)、半字(16位)或字(32位)进行访问。SRAM 起始地址为0x20000000。

• 数据总线上最大可到 12K 字节的 SRAM。可以被 CPU 或者 DMA 用最快的系统时钟且不插入任何等待进行访问。

1.4 闪存存储器概述

闪存存储器有两个不同存储区域:

- 主闪存存储块, 它包括应用程序和用户数据区 (若需要时)
- 信息块, 其包含四个部分:
 - 选项字节 (Option bytes) 一内含硬件及存储保护用户配置选项。
 - 系统存储器 (System memory) 一其包含 boot loader 代码。参见内置闪存存储器章节。

闪存接口基于 AHB 协议执行指令和数据存取。其预取缓冲的功能可加速 CPU 执行代码的速度。

1.5 启动配置 (Boot configuration)

在芯片中,可通过 BOOT0 脚电平状态及 nBOOT1 位的配置选择三种不同的启动模式,如下表所示。

表 2. 启动模式

启动模	式选择	启动模式	说明	
nBOOT1	воото	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
х	0	主闪存存储器	主闪存存储器选为启动区域	
0	1	系统存储器	系统存储器选为启动区域	
1	1	内置 SRAM	内置 SRAM 选为启动区域	

器件复位后,在 SYSCLK 的第 4 个上升沿锁存 BOOT0 pin 的引脚值,用户可通过设置 nBOOT1 bit 配合 BOOT0 pin 的引脚值来选择启动模式。

从待机模式唤醒时, CPU 会重新采样 BOOT0 的引脚值及 nBOOT1 bit, 因此在有待机应用的场合需要保持启动模式的设置。在启动延迟之后, CPU 从地址 0x0000 0000 获取堆栈顶的地址, 并从启动存储器的 0x0000 0004 指示的地址开始执行代码。

根据选定的启动模式,主闪存存储器,系统存储器或 SRAM 按照以下的说明访问:

• 从主闪存存储器启动: 主闪存存储器被映射到启动存储空间(0x0000 0000), 但仍然 能从原有的地址空间(0x800 0000)访问。即闪存存储器的内容可从两个地址开始访问, 0x0000 0000 或 0x800 0000。

- 从系统存储器启动:系统存储器被映射到启动空间(0x0000 0000),但仍然能够在它原有的地址空间(0x1FFF F400)访问。
- 从内置的 SRAM 启动: SRAM 映射到启动空间(0x0000 0000), 但其仍然能够在它原有的地址空间(0x2000 0000) 访问

内嵌的自举程序

自举加载程序 (Boot loader) 存放于系统存储器中,可以通过 UART1 对闪存重新编程。

2

嵌入式闪存 (FLASH)

嵌入式闪存 (FLASH)

2.1 闪存主要特性

• 高达 128K 字节闪存存储器

闪存接口的特性为:

- 带预取缓冲器的数据接口 (2×64位)
- 选择字节加载器
- 闪存编程/擦除操作
- 访问/写保护
- 低功耗模式

2.2 闪存功能描述

2.2.1 闪存结构

闪存空间由 64 位宽的存储单元组成,既可以存代码又可以存数据。主闪存块按 128 页 (每页 1K 字节) 或 32 扇区 (每扇区 4K 字节) 分块,以扇区为单位设置写保护 (参见存储保护相关内容)。

表 3. Flash 模块结构

模块	名称	地址	大小 (字节)
	页 0	0x0800 0000 - 0x0800 03FF	1K
	页 1	0x0800 0400 - 0x0800 07FF	1K
	页 2	0x0800 0800 - 0x0800 0BFF	1K
	页 3	0x0800 0C00 - 0x0800 0FFF	1K
	•••		
	•••		•••
	页 28	0x0800 7000 - 0x0800 73FF	1K
主存储块	页 29	0x0800 7400 - 0x0800 77FF	1K
	页 30	0x0800 7800 - 0x0800 7BFF	1K
	页 31	0x0800 7C00 - 0x0800 7FFF	1K
	•••		
	•••		
	页 123	0x0801 EC00 - 0x0801 EFFF	1K
	页 124	0x0801 F000 - 0x0801 F3FF	1K
	页 125	0x0801 F400 - 0x0801 F7FF	1K
	页 126	0x0801 F800 - 0x0801 FBFF	1K

模块	名称	地址	大小 (字节)
主存储块	页 127	0x0801 FC00 - 0x0801 FFFF	1K
信息块	系统存储器	0x1FFF F400 - 0x1FFF F7FF	1K
信息块 	选项字节	0x1FFF F800 - 0x1FFF F80F	16
	FLASH_ACR	0x4002 2000 - 0x4002 2003	4
	FLASH_KEYR	0x4002 2004 - 0x4002 2007	4
	FLASH_OPTKEYR	0x4002 2008 - 0x4002 200B	4
	FLASH_SR	0x4002 200C - 0x4002 200F	4
闪存存储器接口寄存器	FLASH_CR	0x4002 2010 - 0x4002 2013	4
	FLASH_AR	0x4002 2014 - 0x4002 2017	4
	保留	0x4002 2018 - 0x4002 201B	4
	FLASH_OBR	0x4002 201C - 0x4002 201F	4
	FLASH_WRPR	0x4002 2020 - 0x4002 2023	4

2.2.2 FLASH 读操作

嵌入式 Flash 模块可以像普遍存储空间一样直接寻址访问。任何对 Flash 模块内容的读操作都须经过专门的判断过程。

取指令和取数据都是通过 AHB 总线读取访问,能够按照 Flash 访问控制寄存器 (FLASH_ACR) 中得选项所指定的方式执行:

- 取指: 预取值缓冲区使能后可提高 CPU 运行速度
- 潜伏期: 等待位的个数, 保证正确的读取。

取指

CPU 通过 AHB 总线取指。预取指模块的功效在于提高取指效率。

预取缓冲区

预取缓冲区 (2 个 64 位): 在每一次复位以后被自动打开,由于每个缓冲区的大小 (64 位) 与闪存的带宽相同,因此只通过需一次读闪存的操作即可更新整个缓冲区的内容。由于预取缓冲区的存在,CPU 可以工作在更高的主频。CPU 每次取指最多为 32 位的字,取一条指令时,下一条指令已经在缓冲区中等待。

预取控制器

预取控制器会根据预取缓冲区的可用空间来把握访问 Flash 的时机。当预取缓冲区中存在至少一块可用空间时,预取控制器会发起一次读取请求。复位后,预取指缓冲区的默认状态是打开的。只有在 SYSCLK 低于 24MHz,并且 AHB 时钟没有经过任何分频的条件下(SYSCLK 必须等于 HCLK) 才可以开/关预取指缓冲区。通常情况下,预取指缓冲区在初始化过程中就已经决定好开关状态了,而当时 MCU 运行在内部 8MHz 的振荡器下。

注: 当 AHB 时钟的预分频器不等于 1 时, 预取指缓冲区必须打开访问潜伏期。

访问潜伏期

为了保护对 Flash 的正确读取,必须在 Flash 访问控制寄存器中的 LATENCY[2: 0] 中指定预取指控制器的速度比,这个数值等于每次访问 Flash 后到下次访问之间所需插入的等待周期的个数。复位后,这个值默认为零,也就是没有插入等待周期的状态。

2.2.3 Flash 写和擦除操作

嵌入式闪存支持在线编程以及在应用编程。

ICP 是指使用 SWD 在线改变 Flash 的内容,将用户代码烧录到单片机中。ICP 提供了一种简单高效的方法,免除了烧写芯片时的芯片装夹等问题。

与 ICP 方法不同的是,IAP(在应用编程) 能够使用 MCU 支持的任何通信接口 (I/Os, USB, UART, I2C, SPI, 等等) 下载程序或者数据。IAP 允许用户在运行程序的过程中重写应用程序, 前提是一部分应用程序必须预先用 ICP/ISP 的方法烧写进去。

烧写和擦除操作在整个产品工作电压范围内都可以完成。该操作有下列 7 个寄存器完成:

- 关键字寄存器 (FLASH KEYR)
- 选项字节关键字寄存器 (FLASH OPRKEYR)
- Flash 控制寄存器 (FLASH CR)
- Flash 状态寄存器 (FLASH_SR)
- Flash 地址寄存器 (FLASH AR)
- 选项字节寄存器 (FLASH OBR)
- 写保护寄存器 (FLASH WRPR)

只要 CPU 不去访问 Flash 空间,进行中的 Flash 写操作不会妨碍 CPU 的运行。也就是说,在对 Flash 进行写/擦除操作的同时,任何对 Flash 的访问都会令总线停顿,直到写/擦除操作完成后才会继续执行,这意味着在写/擦除 Flash 的同时不可以对它取指和访问数据。

在对 Flash 空间做写/擦除操作时,内部振荡器 (HSI)必须处于开启状态。

对 Flash 空间的解锁

复位后,Flash 存储器默认是受保护状态的,这样可以防范意外的擦除动作。FLASH_CR 寄存器不允许被改写,除非执行一串针对 FLASH_KEYR 寄存器的解锁操作才能开启对 FLASH CR 的访问权限。这串操作由下面 2 个写操作构成:

- 写关键字 1 = 0x45670123
- 写关键字 2 = 0xCDEF89AB

任何错误的顺序将会锁死 FLASH CR 直至下次复位。

当发生关键字错误时,会由总线错误引发一次硬件错误中断。KEY1 出错会立即中断,KEY1 正确但 KEY2 错误时会在 KEY2 错的时候引发中断。

主闪存编程

主闪存一次可以编程 16 位。当 FLASH_CR 中的 PG 位为 1 时,直接对相应的地址写一个 半字 (16 位),就是一次编程操作。如果试图写别的长度而不是半字,将引起硬件错误中断。

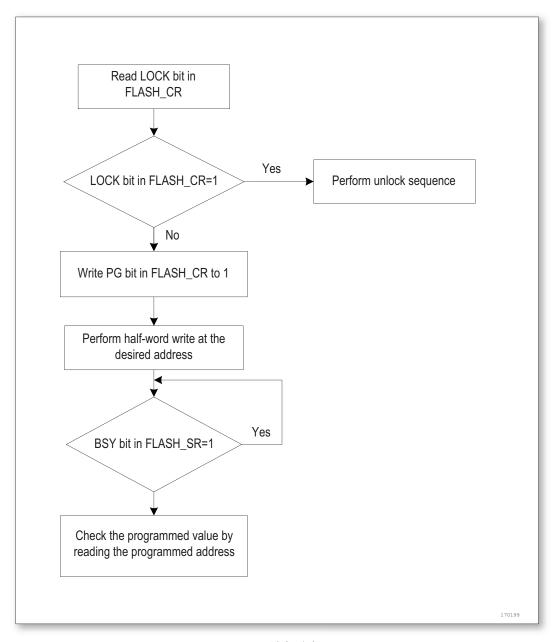


图 2. 编程流程

Flash 存储器接口会预读一下待编程字节后是否为全 1,如果不是,那么编程操作会自动取消,并且在 FLASH_SR 寄存器的 PGERR 位上提示编程错误警告。

如果待编程地址所对应的 FLASH_WRPR 中的写保护位有效,同样也不会有编程动作,同样也会产生编程错误警告。编程动作结束后,FLASH_SR 寄存器中得 EOP 位会给出提示。

主 Flash 存储器标准模式下的编程过程如下:

- 检查 FLASH_SR 中的 BSY 位,以确认上一操作已经结束
- 置 FLASH_CR 寄存器中的 PG 位
- 以半字为单位向目标地址写入数据
- 等待 FLASH_SR 寄存器中的 BSY 归零
- 读数据以校验

注: 当 FLASH_SR 中得 BSY 位为 1 的时候,这些寄存器不能写。

Flash 存储器擦除

Flash 存储器可以按页为单位擦除,也可以整片擦除。

页擦除

擦除页的步骤如下:

- 检查 FLASH_SR 中的 BSY 位,以确认上一操作已经结束
- 置 FLASH_CR 寄存器中得 PER 位为 1
- 写 FLASH_AR 寄存器以选择待擦除的页
- 置 FLASH_CR 寄存器中的 STRT 位为 1
- 等待 FLASH_SR 中的 BSY 归零
- 读取已擦除页以校验

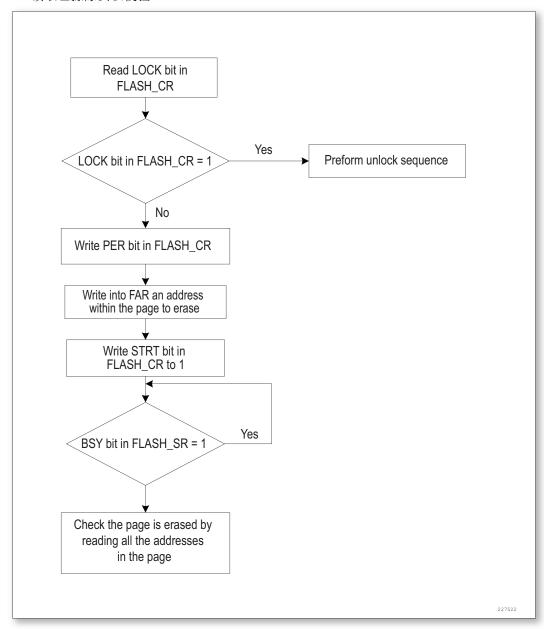


图 3. Flash 寄存器页擦除流程

整片擦除

可以用整片擦除命令一次擦除整个 Flash 用户区,但信息块不会受这个命令影响,具体步骤如下:

- 检查 FLASH_SR 中的 BSY 位,以确认上一操作已经结束
- 置 FLASH CR 寄存器中的 MER 位为 1
- 置 FLASH_CR 寄存器中的 STRT 位为 1
- 等待 BSY 位归零
- 读取全部页并校验

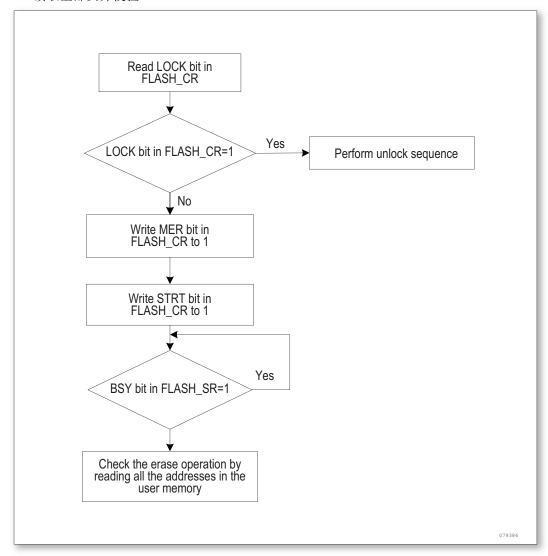


图 4. Flash 寄存器整片擦除流程

选项字节编程

选项字节的编程与常规用户地址不同,包括 2 个写保护,1 个硬件配置。解除 Flash 访问限制后,还需要对 FLASH_OPTKEYR 寄存器完成关键字写入操作。完成该操作后,FLASH_CR 寄存器中的 OPTWRE 位会被置'1',然后就可以先置位 FLASH_CR 中的 OPTPG 位,再按半字单位写目标地址。同样是会自动检查选项字节是否为 1,否则相关操作会被取消并且在 FLASH_SR 中的 WRPRTERR 位提示错误。编程操作结束后,会由 FLASH_SR 寄存器的 EOP 位给出提示。

选项字节为 16 位数据,有效数据为低 8 位,而高 8 位为低 8 位的反码。在编程过程中,硬件会自动将高 8 位设置为低 8 位的反码,保证选项字节的写入值总是对的。步骤如下:

- 检查 FLASH_SR 寄存器中的 BSY 位,以确保上一操作结束
- 解锁 FLASH CR 寄存器中的 OPTWRE 位
- 置 FLASH_CR 寄存器中 OPTPG 位为 1
- 写数据 (半字) 到目标地址
- 等待 BSY 位归零
- 读取并校验当保护选项字节由保护状态被改成非保护状态时,会自动引发一次整片擦除。如果用户只想改写其他的字节,则不会引发整片擦除,这个机制用于保护 Flash 的内容。

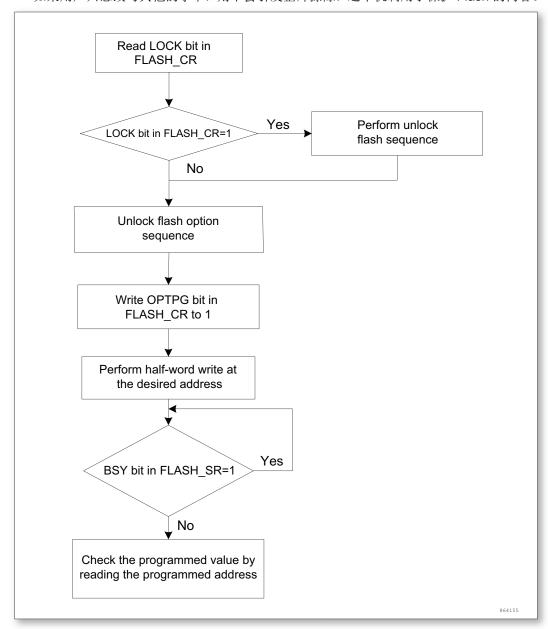


图 5. 选项字节编程流程

擦除过程

选项字节的擦除过程如下:

- 检查 FLASH_SR 寄存器中的 BSY 位,以确保上一操作结束
- 解锁 FLASH_CR 寄存器中的 OPTWRE 位
- 置 FLASH_CR 寄存器中的 OPTER 位为 1
- 置 FLASH_CR 寄存器中的 STRT 位为 1
- 等待 BSY 位归零
- 读取并校验

图 6. 选项字节擦除流程

2.3 存储保护

可以防范用户区 Flash 区的代码被不可信的代码读出,也可以防范在程序跑飞的时候对 Flash 的意外擦除,写保护的最小单位是一个扇区 (4 页)。

2.3.1 主空间写保护

写保护以一个扇区为单位 (4 页)来控制,配置选项字节中的 WRP 位,随后的系统复位将加载新选项字节就可以使能这个保护。如果试图写入或擦除一个受保护的扇区,会引起 FLASH SR 中的 WRPRTERR 标志位被置位。

解除保护

这种情况常见于用户自己的实现在程序中编程的启动程序:

- 使用闪存控制寄存器 (FLASH CR) 的 OPTER 位擦除整个选项字节区域;
- 进行系统复位, 重装载选项字节 (包含新的 WRP 字节); 写保护被解除。

使用这种方法,将解除除页 $0 \sim 5$ 3 之外的整个主闪存模块的写保护,页 $0 \sim 5$ 3 仍处于写保护。

2.3.2 选项字节的写保护

默认状态下,选项字节块始终是可以读且被写保护。要想对选项字节块进行写操作 (编程/擦除) 首先要在 OPTKEYR 中写入正确的键序列 (与上锁时一样),随后允许对选项字节块的写操作,FLASH_CR 寄存器的 OPTWRE 位标示允许写,清除这位将禁止写操作。

2.4 Flash 中断

表 4. Flash 中断请求

中断事件	事件标志	使能控制位
操作结束	EOP	EOPIE
写保护错误	WRPRTERR	ERRIE
编程错误	PGERR	ERRIE

2.5 选项字节说明

选项字节由用户根据应用的需要配置;例如:可以选择使用硬件模式的看门狗或软件的看门狗。

在选项字节中每个 32 位的字被划分为下述格式:

表 5. 选项字节格式

位 31 ~ 24	位 23 ~ 16	位 15~8	位 7 ~ 0
选项字节 1 的反码	选项字节 1	选项字节 0 的反码	选项字节 0

注: 反码由硬件自动实现, 软件写无效

选项字节块中选项字节的组织结构如下表所示。

选项字节可以从下表列出的存储器地址读出,或从选项字节寄存器 (FLASH_OBR) 读出。注: 新写入的选项字节 (用户的或读/写保护的),在系统复位后才生效。

表 6. 选项字节结构

地址	[31: 24]	[23: 16]	[15: 8]	[7: 0]
0x1FFF F800	nUSER	USER		
0x1FFF F804	nData1	Data1	nData0	Data0
0x1FFF F808	nWRP1	WRP1	nWRP0	WRP0
0x1FFF F80C	nWRP3	WRP3	nWRP2	WRP2

表 7. 选项字节说明

存储器地址	选项字节
	位 [31: 24] nUSER
	位 [23: 16] USER: 用户选项字节 (保存在 FLASH_OBR[9: 2] 中)。这个字节用于配置下列
	功能:
	选择看门狗事件: 硬件或软件
	注: 只使用位 [20]、位 [18: 16], 不使用位 [23: 21]、位 [19]。
	位 20: nBOOT1
	位 18: nRST_STDBY
0.4555.5000	0: 当进入待机模式时产生复位
0x1FFF F800	1: 进入待机模式时不产生复位
	位 17: nRST_STOP
	0: 当进入停机 (STOP) 模式时产生复位
	1: 进入停机 (STOP) 模式时不产生复位
	位 16: WDG_SW
	0: 硬件看门狗
	1: 软件看门狗
	Datax: 2 个字节的用户数据
	这个地址可以使用选项字节的编程方式编程。
	位 [31: 24]: nData1
0x1FFF F804	位 [23: 16]: Data1(存储在 FLASH_OBR[25: 18])
	位 [15: 8]: nData0
	位 [7: 0]: Data0(存储在 FLASH_OBR[17: 10])
	WRPx: 闪存写保护选项字节
	位 [31: 24]: nWRP1
0x1FFF F808	位 [23: 16]: WRP1(存储在 FLASH_WRPR[15: 8])
	位 [15: 8]: nWRP0
	位 [7: 0]: WRP0(存储在 FLASH_WRPR[7: 0])

存储器地址	选项字节						
	WRPx: 闪存写保护选项字节						
	位 [31: 24]: nWRP3						
	位 [23: 16]: WRP3(存储在 FLASH_WRPR[31: 24])						
	位 [15: 8]: nWRP2						
	位 [7:0]: WRP2(存储在 FLASH_WRPR[23:16])						
	选项字节 WRPx 中的每一个比特位用于保护主存储器中 4 个存储页:						
0x1FFF F80C	0: 实施写保护						
	1: 不实施写保护						
	四个用户选项字节用于保护总共 128K 字节的主存器。						
	WRP0: 第 0 ~ 31 页的写保护						
	WRP1: 第 32 ~ 63 页的写保护						
	WRP2: 第 64 ~ 95 页的写保护						
	WRP3: 第 96 ~ 127 页的写保护						

每次系统复位后,选项字节装载器 (OBL) 读出信息块的数据,并保存在选项字节寄存器 (FLASH_OBR) 中;每个选择位都在信息块中有它的反码位,在装载选择位时反码位用于验证选择位是否正确,如果有任何的差别,将产生一个选项字节错误标志 (OPTERR)。当发生选项字节错误时,对应的选项字节被强置为 0xFF。当选项字节和它的反码均为 0xFF 时 (擦除后的状态),则关闭上述验证功能。

所有的选择位 (不包括它们的反码位) 用于配置该微控制器, CPU 可以读选项字节寄存器。

2.6 Flash 寄存器描述

表 8. FLASH 寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	FLASH_ACR	闪存访问控制寄存器	0x00000008	小节 2.6.1
0x04	FLASH_KEYR	FPEC 键寄存器	0xXXXXXXX	小节 2.6.2
0x08	FLASH_OPTKEYR	闪存 OPTKEY 寄存器	0xXXXXXXX	小节 2.6.3
0x0C	FLASH_SR	闪存状态寄存器	0x00000000	小节 2.6.4
0x10	FLASH_CR	闪存控制寄存器	0x00000080	小节 2.6.5
0x14	FLASH_AR	闪存地址寄存器	0x00000000	小节 2.6.6
0x1C	FLASH_OBR	选项字节寄存器	0x03FFFC1C	小节 2.6.7
0x20	FLASH_WRPR	写保护寄存器	0xFFFFFFF	小节 2.6.8

2.6.1 闪存访问控制寄存器 (FLASH_ACR)

地址偏移: 0x00

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved									HLFCYA		LATENCY			
												rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31 : 4	Reserved			保留,始终读为0。
3	HLFCYA	rw	0x01	闪存半周期访问使能 (Flash half cycle access enable) 0: 禁止半周期访问 1: 启用半周期访问
2:0	LATENCY	rw	0x00	时延 (Latency) 这些位表示 SYSCLK(系统时钟) 周期与闪存访问时间的比例。 000: 零等待状态,当 0 < SYSCLK ≤ 24MHz 001: 一个等待状态,当 24MHz < SYSCLK ≤ 48MHz 010: 两个等待状态,当 48MHz < SYSCLK ≤ 72MHz 011: 三个等待状态,当 72MHz < SYSCLK ≤ 96MHz

2.6.2 闪存访问控制寄存器 (FLASH_KEYR)

地址偏移: 0x04

复位值: 0xXXXX XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	FKEYR														
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	FKEYR														
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Bit	Field	Туре	Reset	Description
31 : 0	FKEYR	W	0xXXXX	FPEC 键 (Flash key)
			XXXX	这些位用于输入 FPEC 的解锁键。

注: 所有这些位是只写的, 读出时返回 0。

2.6.3 闪存 OPTKEY 寄存器 (FLASH_OPTKEYR)

地址偏移: 0x08

复位值: 0xXXXX XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							OPT	KEYR							
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	OPTKEYR														
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Bit	Field	Type	Reset	Description
31:0	OPTKEYR	W	0xXXXX	选择字节键 (Option byte key)
			XXXX	这些位用于输入选项字节的键以解除 OPTWRE。

注: 所有这些位是只写的, 读出时返回 0。

2.6.4 闪存状态寄存器 (FLASH_SR)

地址偏移: 0x0C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	• • •							•		EOP	WRPRTE			- '	
	Reserved										RR	Res.	PGERR	Res.	BSY
										rc_w1	rc_w1		rc_w1		r

Bit	Field	Туре	Reset	Description
31 : 6	Reserved			保留,始终读为0。
5	EOP	rc_w1	0x00	操作结束 (End of operation) 当闪存操作 (编程/擦除) 完成时,硬件设置这位为'1',写 入'1'可以清除这位状态。 注:每次成功的编程或擦除都会设置 EOP 状态。
4	WRPRTERR	rc_w1	0x00	写保护错误 (Write protection error) 试图对写保护的闪存地址编程时,硬件设置这位为'1',写入'1'可以清除这位状态。
3	Reserved			保留,始终读为0。
2	PGERR	rc_w1	0x00	编程错误 (Programming error) 试图对内容不是'0xFFFF'的地址编程时,硬件设置这位为'1',写入'1'可以清除这位状态。 注:进行编程操作之前,必须先清除 FLASH_CR 寄存器的 STRT 位。
1	Reserved			保留,始终读为0。

Bit	Field	Туре	Reset	Description
0	BSY	r	0x00	忙 (Busy)
				该位指示闪存操作正在进行。在闪存操作开始时,该位被
				设置为'1';在操作结束或发生错误时该位被清除为'0'。

2.6.5 闪存控制寄存器 (FLASH_CR)

地址偏移: 0x10

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1103	erved							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		EOPIE	Res.	ERRIE	OPTWRE	Res.	LOCK	STRT	OPTER	OPTPG	Res.	MER	PER	PG
			rw		rw	rc w0		rw	rw	rw	rw		rw	rw	rw

		_		-
Bit	Field	Type	Reset	Description
31 : 13	Reserved			保留,始终读为0。
12	EOPIE	rw	0x00	允许操作完成中断 (End of operation interrupt enable) 该位允许在 FLASH_SR 寄存器中的 EOP 位变为'1'时产生中断。 0: 禁止产生中断 1: 允许产生中断
11	Reserved			保留,始终读为0。
10	ERRIE	rw	0x00	允许错误状态中断 (Error interrupt enable) 该位允许在发生 FPEC 错误时产生中断 (当 FLASH_SR 寄存器中的 PGERR/WRPRTERR 置为'1'时)。 0: 禁止产生中断 1: 允许产生中断
9	OPTWRE	rc_w0	0x00	允许写选项字节 (Option byte write enable) 当该位为'1'时,允许对选项字节进行编程操作。当在FLASH_OPTKEYR 寄存器写入正确的键序列后,该位被置为'1'。 软件写 0 可清除此位。
8	Reserved			保留,始终读为0。
7	LOCK	rw	0x01	锁 (Lock) 只能写'1'。当该位为'1'时表示 FPEC 和 FLASH_CR 被锁住。在检测到正确的解锁序列后,硬件自动清除此位 为'0'。 在一次不成功的解锁操作后,下次系统复位前,该位不能再 被改变。

Bit	Field	Туре	Reset	Description
6	STRT	rw	0x00	开始 (Start)
				当该位为'1'时将触发一次擦除操作。该位只可由软件置
				为 '1' 并在 BSY 变为 '1' 时自动清 '0'。
5	OPTER	rw	0x00	擦除选项字节 (Option byte erase)
				擦除选项字节。
4	OPTPG	rw	0x00	烧写选项字节 (Option byte programming)
				对选项字节编程。
3	Reserved			保留,始终读为0。
2	MER	rw	0x00	全擦除 (Mass erase)
				选择擦除所有用户页。
1	PER	rw	0x00	页擦除 (Page erase)
				选择擦除页。
0	PG	rw	0x00	编程 (Programming)
				选择编程操作。

2.6.6 闪存地址寄存器 (FLASH_AR)

地址偏移: 0x014

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							F/	AR							
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							F	AR							
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Bit	Field	Туре	Reset	Description
31 : 0	FAR	W	0x0000	用户选项字节 (Flash Address)
			0000	当进行编程时选择要编程的地址,当进行页擦除时选择要擦除的页。 注意: 当 FLASH_SR 中的 BSY 位为'1'时,不能写这个寄存器。

由硬件修改为当前/最后使用的地址。页擦除操作中,必须修改这个寄存器以指定要擦除的页。

2.6.7 选项字节寄存器 (FLASH_OBR)

地址偏移: 0x1C

复位值: 0x03FF FC1C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		Rese	erved						Dat	a1				Data0		
						r	r	r	r	r	r	r	r	r	r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		Da	ta0				Reserved		nBOOT1	Res.	nRST_ STDBY	nRST_ STOP	WDG _SW	Res.	OPTERR	
r	r	r	r	r	r				r		r	r	r	•	r	

Bit	Field	Туре	Reset	Description
31 : 26	Reserved			保留,始终读为0。
25 : 18	Data1	r	0xFF	Data1
17 : 10	Data0	r	0xFF	Data0
9:7	Reserved			保留,始终读为0。
6	nBOOT1	r	0x00	nBOOT1
5	Reserved			保留,始终读为0。
4	nRST_STDBY	r	0x01	进入待机模式时的复位事件
				0: 当进入待机模式时产生复位
				1: 进入待机模式时不产生复位
3	nRST_STOP	r	0x01	进入停机模式时的复位事件
				0: 当进入停机 (STOP) 模式时产生复位
				1: 进入停机 (STOP) 模式时不产生复位
2	WDG_SW	r	0x01	选择看门狗事件
				0: 硬件看门狗
				1: 软件看门狗
1	Reserved			保留,始终读为0。
0	OPTERR	r	0x00	选项字节错误 (Option byte error)
				当该位为'1'时表示选项字节和它的反码不匹配。
				注意:该位为只读。

这个寄存器的复位数值与写入选项字节中的数值相关,OPTERR 位的复位值与加载选项字节时对选项字节和它的反码进行比较的结果相关。

2.6.8 写保护寄存器 (FLASH_WRPR)

地址偏移: 0x20

复位值: 0xFFFF FFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							W	RP							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							W	RP							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bit	Field	Туре	Reset	Description
31 : 0	WRP	r	0xFFFF	写保护 (Write protect)
			FFFF	该寄存器包含由 OBL 加载的写保护选项字节。
				0: 写保护生效
				1: 写保护失效
				注意: 这些位为只读。

3

循环冗余校验计算单元 (CRC)

循环冗余校验计算单元 (CRC)

3.1 CRC 简介

循环冗余校验 (CRC) 计算单元是根据固定的生成多项式得到任一 32 位全字的 CRC 计算结果。在其他的应用中,CRC 技术主要应用于核实数据传输或者数据存储的正确性和完整性。标准 EN/IEC60335-1 即提供了一种核实闪存存储器完整性的方法。CRC 计算单元可以在程序运行时计算出软件的标识,之后与在连接时生成的参考标识比较,然后存放在指定的存储器空间。

3.2 CRC 主要特征

- 使用 CRC-32(以太网) 多项式: 0x4C11DB7
 X³² + X²⁶ + X²³ + X²² + X¹⁶ + X¹² + X¹¹ + X¹⁰+X⁸ + X⁷ + X⁵ + X⁴ + X² + X + 1
- 一个 32 位数据寄存器用于输入/输出。
- CRC 计算时间: 4 个 AHB 时钟周期 (HCLK)
- 通用 8 位寄存器 (可用于存放临时数据)

下图为 CRC 计算单元框图

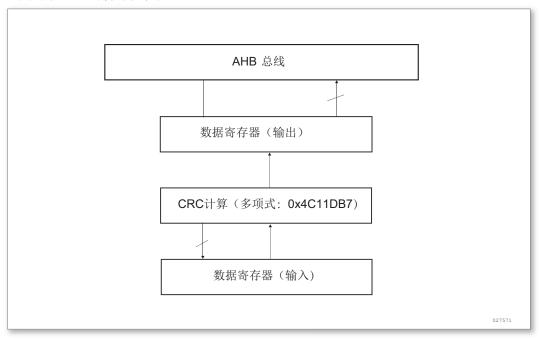


图 7. CRC 计算单元框图

3.3 CRC 功能介绍

CRC 计算单元含有 1 个 32 位数据寄存器:

- 对该寄存器进行写操作时,作为输入寄存器,可以输入要进行 CRC 计算的新数据。
- 对该寄存器进行读操作时,返回上一次 CRC 计算的结果。

每一次写入数据寄存器,其计算结果是前一次 CRC 计算结果和新计算结果的组合 (对整个 32 位字进行 CRC 计算,而不是逐字节地计算)。

在 CRC 计算期间会暂停写操作,因此可以对寄存器 CRC_DR 进行背靠背写入或者连续地写-读操作。

可以通过设置寄存器 CRC_CTRL 的 RESET 位来重置寄存器 CRC_DR 为 0xFFFF FFFF。 该操作不影响寄存器 CRC IDR 内的数据。

3.4 CRC 寄存器

CRC 计算单元包括了 2 个数据寄存器和一个控制寄存器。

表 9. CRC 寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	CRC_DR	CRC 数据寄存器	0xFFFFFFF	小节 3.4.1
0x04	CRC_IDR	CRC 独立数据寄存器	0x00000000	小节 3.4.2
0x08	CRC_CTRL	CRC 控制寄存	0x00000000	小节 3.4.3

3.4.1 CRC 数据寄存器 (CRC DR)

地址偏移: 0x00

复位值: 0xFFFF FFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	DR														
rw															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							D	R							
rw															

Bit	Field	Туре	Reset	Description
31 : 0	DR	rw	0xFFFF	DR: 数据寄存器位 (Data register bits)
			FFFF	写入 CRC 计算器的新数据时,作为输入寄存器
				读取时返回 CRC 计算结果

3.4.2 CRC 独立数据寄存器 (CRC_IDR)

地址偏移: 0x04

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved										IE)R			
								rw							

Bit	Field	Туре	Reset	Description
31 : 8	Reserved			始终读为 0。
7:0	IDR	rw	0x00	IDR: 通用 8 位数据寄存器位 (General-purpose 8-bit data
				register bits)
				可用于临时存放 1 字节的数据。
				寄存器 CRC_CTRL 的 RESET 位产生的 CRC 复位对本寄
				存器没有影响。

注:此寄存器不参与 CRC 计算,可以存放任何数据。

3.4.3 CRC 控制寄存器 (CRC_CTRL)

地址偏移: 0x08

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved												RESET			

w

Bit	Field	Туре	Reset	Description
31 : 1	Reserved			始终读为 0。
0	RESET	W	0x00	RESET: 复位 CRC 计算单元 (CRC reset) 设置数据寄存器为 0xFFFF FFFF。 只能对该位写'1',它由硬件自动清'0'。

4

硬件除法 (HWDIV)

硬件除法 (HWDIV)

4.1 硬件除法简介

硬件除法在一些高性能的应用中非常有用,能自动执行有符号或者无符号的 32 位整数除法运算。

4.2 硬件除法主要特征

- 有符号或者无符号整数除法运算
- 32 位除数和被除数,输出 32 位的商和余数
- 8 个 HCLK 周期完成
- 如果除数为零,会产生溢出中断标志位
- 写除数自动执行除法运算
- 读商和余数寄存器时自动等待运算结束,不需要检查状态位

4.3 硬件除法功能介绍

硬件除法单元包括 4 个 32 位数据寄存器,分别为被除数,除数,商和余数,可以做有符号或者无符号的 32 位除法运算。通过硬件除法控制寄存器 USIGN 可以选择是有符号除法还是无符号除法。

每一次写入除数寄存器,会自动触发除法运算,在运算结束后,结果会写入到商和余数寄存器里。如果在结束前读商寄存器、余数寄存器或者状态寄存器,读操作会被暂停,直到结束才返回运算结果。

如果除数为零,会产生溢出中断标志位。

4.4 硬件除法寄存器

表 10. 硬件除法寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	HWDIV_DVDR	被除数寄存器	0x00000000	小节 4.4.1
0x04	HWDIV_DVSR	除数寄存器	0x0000001	小节 4.4.2
0x08	HWDIV_QUOTR	商寄存器	0x00000000	小节 4.4.3
0x0C	HWDIV_RMDR	余数寄存器	0x00000000	小节 4.4.4
0x10	HWDIV_SR	HWDIV 状态寄存器	0x00000000	小节 4.4.5
0x14	HWDIV_CR	HWDIV 控制寄存器	0x00000001	小节 4.4.6

4.4.1 被除数寄存器 (HWDIV_DVDR)

偏移地址: 0x00

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	DIVIDEND														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DIVII	DEND							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31 : 0	DIVIDEND	rw	0x0000 0000	被除数寄存器位(Dividend data)

4.4.2 除数寄存器 (HWDIV_DVSR)

偏移地址: 0x04

复位值: 0x0000 0001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	DIVISOR														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DIV	ISOR							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Type	Reset	Description
31 : 0	DIVISOR	rw	0x0000	除数寄存器位(Divisor data)
			0001	写完该寄存器后,自动触发除法运算。

4.4.3 商寄存器 (HWDIV_QUOTR)

偏移地址: 0x08

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							QUO	TIENT							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							QUO	TIENT							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bit	Field	Туре	Reset	Description
31 : 0	QUOTIENT	r	0x0000	商寄存器位(Quotient data)
			0000	

4.4.4 余数寄存器 (HWDIV_RMDR)

偏移地址: 0x0C

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							REMA	INDER							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							REMA	INDER							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bit	Field	Туре	Reset	Description
31 : 0	REMAINDER	r	0x0000	余数寄存器位(Remainder data)
			0000	

4.4.5 HWDIV 状态寄存器 (HWDIV_SR)

偏移地址: 0x10

复位值: 0x0000 0000

			> 1_ 1	· · · · · · ·		• •									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							R	es.							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Res.								OVF
															_

Bit	Field	Туре	Reset	Description
31: 1	Reserved			保留,始终读为0。
0	OVF	r	0x00	除零溢出状态标志位(Overflow)
				在下次除法操作前自动清除
				1: 当前操作除数为零。
				0: 当前操作除数不为零。

4.4.6 HWDIV 控制寄存器 (HWDIV_CR)

偏移地址: 0x14

UM_MM32SPIN2x_p_Ver1.19

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							R	les.							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Re	es.							OVFE	USIGN
														rw	rw

Bit	Field	Туре	Reset	Description
31: 2	Reserved			保留,始终读为0。
1	OVFE	rw	0x00	除零溢出中断使能(Overflow interrupt enable)
				1: 除零溢出中断使能
				0: 除零溢出中断不使能
0	USIGN	rw	0x01	无符号除法使能(Unsigned enable)
				1: 无符号除法
				0: 有符号除法

5

硬件开方 (HSQRT)

硬件开方 (HSQRT)

5.1 硬件开方简介

硬件开方单元支持 32 位的开根号运算。

5.2 硬件开方主要特征

- 32 位无符号整数开根号,输出 16 位的无符号整数
- 32 位无符号整数开根号,输出 16 位的无符号整数
- 8 个 HCLK 周期完成
- 写被开方数自动执行除法运算
- 读平方根寄存器时自动等待运算结束,不需要检查状态位

5.3 硬件开方功能介绍

硬件开方单元包括 1 个 32 位被开方寄存器和 1 个 16 位平方根寄存器,都是无符号整数。每一次写入被开方寄存器,会自动触发开方运算,在运算结束后,结果会写入到平方根寄存器里。如果在结束前读平方根寄存器,读操作会被暂停,直到结束才返回运算结果。

5.4 硬件开方寄存器

表 11. 硬件开方寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	HSQRT_SQR	被开方数据寄存器	0x00000000	小节 5.4.1
0x04	HSQRT_RESULT	平方根数据寄存器	0x00000000	小节 5.4.2

5.4.1 被开方数据寄存器 (HSQRT_SQR)

偏移地址: 0x00

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SQUA	RE							
rw	rw	rw	rw	rw	rw	rw	rw	rw							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							SQUA	RE							
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bit	Field	Туре	Reset	Description
31 : 0	SQUARE	rw	0x0000	被开方数寄存器位(Square data)
			0000	写完该寄存器后,自动触发开方运算。

5.4.2 平方根数据寄存器 (HSQRT_RESULT)

偏移地址: 0x04

31	30	29	28	27	26	25	24 Rese	23 arved	22	21	20	19	18	17	16
							11636	i veu							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ROOT														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Type	Reset	Description
31 : 16	Reserved			始终读为 0。
15 : 0	ROOT	rw	0x0000	平方根数寄存器位(Root data)

6

电源控制 (PWR)

电源控制 (PWR)

6.1 电源

芯片的工作电压 (V_{DD}) 为 2.0V ~ 5.5V。通过内置的电压调节器提供所需的 1.5V 电源。

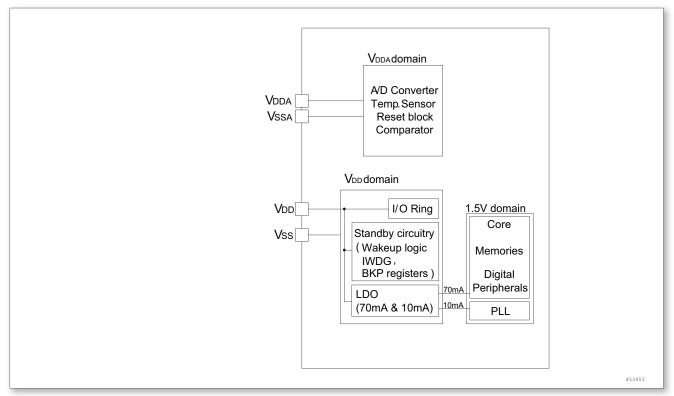


图 8. 申源框图

注: V_{DDA} 和 V_{SSA} 必须分别连到 V_{DD} 和 V_{SS}。

6.1.1 独立的 A/D 转换器供电和参考电压

为了提高转换的精确度,ADC 使用一个独立的电源供电,过滤和屏蔽来自印刷电路板上的毛刺干扰。

- ADC 的电源引脚为 VDDA
- 独立的电源地 V_{SSA}

如果有 V_{REF} 引脚 (根据封装而定),它必须连接到 V_{SSA}。

6.1.2 电池备份区域

当调节器 1.5V 电压域断电时,可以保存备份寄存器的内容。

6.1.3 电压调节器

复位后调节器总是使能的。根据应用方式它以3种不同的模式工作。

- 运转模式:调节器以正常功耗模式提供 1.5V 电源 (内核,内存和外设)。
- 停机模式:调节器以低功耗模式提供 1.5V 电源,以保存寄存器和 SRAM 的内容。
- 待机模式:调节器停止供电。除了备用电路和备份域外,寄存器和 SRAM 的内容全部丢失。

6.2 电源管理器

6.2.1 上电复位 (POR) 和掉电复位 (PDR)

芯片有一个完整的上电复位 (POR) 和掉电复位 (PDR) 电路,当供电电压达到 2.0V 时系统即能正常工作。

当 V_{DD}/V_{DDA} 低于指定的限位电压 V_{POR}/V_{PDR} 时,系统保持为复位状态,而无需外部复位电路。关于上电复位和掉电复位的细节请参考数据手册的电气特性部分。

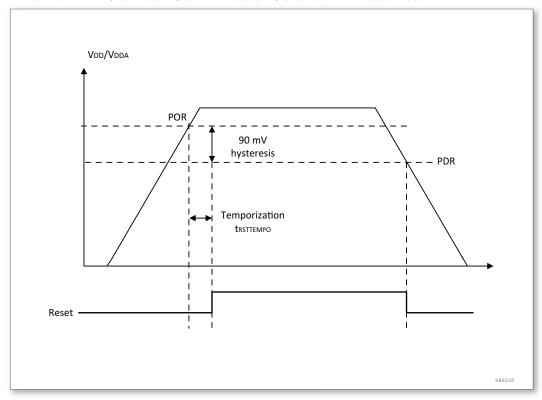


图 9. 上电复位和掉电复位的波形图

6.2.2 可编程电压监测器 (PVD)

用户可以利用 PVD 对 V_{DD} 电压与电源控制寄存器 (PWR_CR) 中的 PLS 位进行比较来监控电源,这几位选择监控电压的阀值。

通过设置 PVDE 位来使能 PVD。

电源控制/状态寄存器 (PWR_CSR) 中的 PVDO 标志用来表明 V_{DD} 是高于还是低于 PVD 的电压阀值。该事件在内部连接到外部中断的第 16 线,如果该中断在外部中断寄存器中是使能的,该事件就会产生中断。当 V_{DD} 下降到 PVD 阀值以下或当 V_{DD} 上升到 PVD 阀

值之上时,根据外部中断第 16 线的上升/下降边沿触发设置,就会产生 PVD 中断。例如,这一特性可用于用于执行紧急关闭任务。

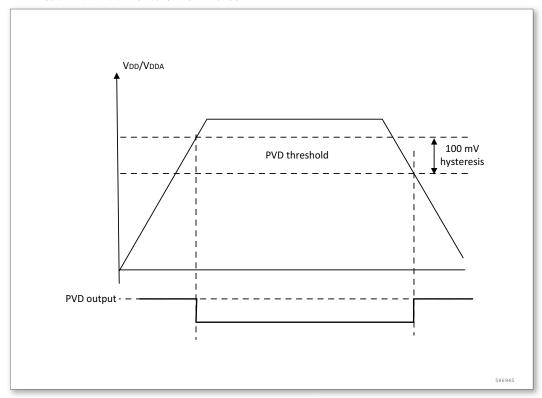


图 10. PVD 的阈值

6.3 低功耗模式

在系统或电源复位以后,微控制器处于运行状态。当 CPU 不需继续运行时,可以利用多种低功耗模式来节省功耗,例如等待某个外部事件时。用户需要根据最低电源消耗、最快速启动时间和可用的唤醒源等条件,选定一个最佳的低功耗模式。

芯片有三种低功耗模式:

- 睡眠模式 (CPU 停止, 所有外设包括 CPU 的外设, 如 NVIC、系统时钟 (SysTick) 等仍 在运行)
- 停机模式 (所有的时钟都已停止,寄存器和 SRAM 的内容依然保存)
- 待机模式 (1.5V 电源关闭,除了备用电路和备份域外,寄存器和 SRAM 的内容全部丢失。)

此外,在运行模式下,可以通过以下方式中的一种降低功耗:

- 降低系统时钟频率
- 关闭 APB 和 AHB 总线上未被使用的外设时钟

表 12. 低功耗模式一览

模式	进入	进入 唤醒		对 V _{DD} 区域时钟 的影响	电压调节器
睡眠 (SLEEP	WFI (Wait for Interrupt)	任一中断	CPU 时钟关,对		
NOW 或 SLEEP ON EXIT)	WFE (Wait for Event)	唤醒事件	其他时钟和 ADC 时钟无影响	无	开
停机	PDDS 位 SLEEPDEEP 位 WFI 或 WFE	任一外部中断 (在 外部中断寄存器 中设置)	所有使用 1.5V 的 区域的时钟都已	PLL、HSI 和 HSE 的振荡器关	开
待机	PDDS SLEEPDEEP 位 WFI 或 WFE	WKUP 引脚的上 升沿、NRST 引 脚上的外部复位、 IWDG 复位	关闭	闭	关

6.3.1 降低系统时钟

在运行模式下,通过对预分频寄存器进行编程,可以降低任意一个系统时钟(SYSCLK、HCLK、PCLK1、PCLK2)的速度。进入睡眠模式前,也可以利用预分频器来降低外设的时钟。

详见:时钟配置寄存器 (RCC_CFGR)

6.3.2 外部时钟的控制

在运行模式下,任何时候都可以通过停止为外设和内存提供时钟 (HCLK 和 PCLKx) 来减少功耗。

为了在睡眠模式下更多地减少功耗,可在执行 WFI 或 WFE 指令前关闭所有外设的时钟。通过设置 AHB 外设时钟使能寄存器 (RCC_AHBENR)、APB2 外设时钟使能寄存器 (RCC_APB1ENR) 和 APB1 外设时钟使能寄存器 (RCC_APB1ENR) 来开关各个外设模块的时钟。

6.3.3 睡眠模式

进入睡眠模式

通过执行 WFI 或 WFE 指令进入睡眠状态。根据 CPU 系统控制寄存器中的 SLEEPONEXIT 位的值,有两种选项可用于选择睡眠模式进入机制:

- SLEEP-NOW: 如果 SLEEPONEXIT 位被清除,当 WFI 或 WFE 被执行时,微控制器立即进入睡眠模式。
- SLEEP-ON-EXIT: 如果 SLEEPONEXIT 位被置位,系统从最低优先级的中断处理程序中退出时,微控制器就立即进入睡眠模式。

在睡眠模式下,所有的 I/O 引脚都保持它们在运行模式时的状态。

关于如何进入睡眠模式,更多的细节参考表 13和表 14。

表 13. SLEEP NOW 模式

SLEEP NOW 模式	说明					
	在以下条件下执行 WFI(Wait for Interrupt) 或 WFE(Wait for Event) 指令:					
进入	- SLEEPDEEP = 0					
近八	- SLEEPONEXIT = 0					
	参考 CPU 系统控制寄存器。					
退出	如果执行 WFI 进入睡眠模式:中断:参考中断向量表					
地山	如果执行 WFE 进入睡眠模式:唤醒事件:参考唤醒事件管理					
唤醒延时	无					

表 14. SLEEP ON EXIT 模式

SLEEP ON EXIT 模式	说明					
	在以下条件下执行 WFI(Wait for Interrupt) 或 WFE(Wait for Event) 指令:					
进入	- SLEEPDEEP = 0					
近八	- SLEEPONEXIT = 1					
	参考 CPU 系统控制寄存器。					
退出	如果执行 WFI 进入睡眠模式: 中断或清除 CPU 控制寄存器位 1					
地山	如果执行 WFE 进入睡眠模式:唤醒事件:参考唤醒事件管理					
唤醒延时	无					

6.3.4 停机模式

停机模式是在 CPU 的深睡眠模式基础上结合了外设的时钟控制机制,在停机模式下电压调节器可运行在正常模式。此时在 1.5V 供电区域的的所有时钟都被停止,PLL、HSI 和 HSE 振荡器的功能被禁止,SRAM 和寄存器内容被保留下来。

在停机模式下,所有的 I/O 引脚都保持它们在运行模式时的状态。

进入停机模式

关于如何进入停机模式,详见表 15。

可以通过对独立的控制位进行编程,可选择以下功能:

- 独立看门狗 (IWDG): 可通过写入看门狗的键寄存器或硬件选择来启动 IWDG。
- 内部振荡器 (LSI 振荡器): 通过控制/状态寄存器 (RCC_CSR) 的 LSION 位来设置。

在停机模式下,如果在进入该模式前 ADC 没有被关闭,那么这些外设仍然消耗电流。通过设置寄存器 ADC_CR2 的 ADON 位为 0 可关闭这个外设。其他没有使用的 GPIO 需要设置模拟输入,否则有电流消耗。

退出停机模式

关于如何退出停机模式,详见表表 15。

当一个中断或唤醒事件导致退出停机模式时, HSI 振荡器被选为系统时钟。时钟频率为 HSI 的 6 分频。

当电压调节器处于正常功耗模式下,系统从停机模式退出时,将会有一段额外的启动延时。

表 15. 停机模式

停机模式	说明
	在以下条件下执行 WFI(Wait for Interrupt) 或 WFE(Wait for Event) 指令:
	- 设置 CPU 系统控制寄存器中的 SLEEPDEEP 位
进入	- 清除电源控制寄存器 (PWR_CR) 中的 PDDS 位
	注:为了进入停机模式,所有的外部中断的请求位 (挂起寄存器 (EXTI_PEND))
	和RTC的闹钟标志都必须被清除,否则停机模式的进入流程将会被跳过,程序继续运行。
	在以下条件下执行 WFI(Wait for Interrupt) 指令:
	任一外部中断引线被设置为中断模式 (相应的外部中断向量在 NVIC 中必须使能)。
退出	参见中断向量表
	在以下条件下执行 WFE(Wait for Event) 指令:
	任一外部中断引线被设置为事件模式。参见唤醒事件管理。
唤醒延时	HSI 的唤醒时间

6.3.5 待机模式

待机模式可实现系统的最低功耗。该模式是在 CPU 深睡眠模式时关闭电压调节器。整个 1.5V 供电区域被断电。PLL、HSI 和 HSE 振荡器也被断电。SRAM 和寄存器内容丢失。只有备份的寄存器和待机电路维持供电。

进入待机模式

关于如何进入待机模式,详见表 16。

可以通过设置独立的控制位,选择以下待机模式的功能:

- 独立看门狗 (IWDG): 可通过写入看门狗的键寄存器或硬件选择来启动 IWDG。
- 内部振荡器 (LSI 振荡器): 通过控制/状态寄存器 (RCC CSR) 的 LSION 位来设置。

退出待机模式

当一个外部复位 (NRST 引脚)、IWDG 复位或 WKUP 引脚上的上升沿,微控制器从待机模式退出。从待机唤醒后,除了:电源控制/状态寄存器 (PWR_CSR),所有寄存器被复位。从待机模式唤醒后的代码执行等同于复位后的执行 (采样启动模式引脚、读取复位向量等)。

电源控制/状态寄存器 (PWR_CSR) 将会指示内核由待机状态退出。

关于如何退出待机模式,详见表表 16。

表 16. 待机模式

	说明
	在以下条件下执行 WFI(Wait for Interrupt) 或 WFE(Wait for Event) 指令:
2#)	- 设置 CPU 系统控制寄存器中的 SLEEPDEEP 位
进入	- 设置电源控制寄存器 (PWR_CR) 中的 PDDS 位
	- 清除电源控制/状态寄存器 (PWR_CSR) 中的 WUF 位
退出	WKUP 引脚的上升沿、NRST 引脚上外部复位、IWDG 复位。

	说明				
唤醒延时	复位阶段时电压调节器的启动。				

待机模式下的输入/输出端口状态

在待机模式下, 所有的 I/O 引脚处于高阻态, 除了以下的引脚:

- 复位引脚 (始终有效)
- 当被设置为防侵入或校准输出时的 TAMPER 引脚
- 被使能的唤醒引脚

调试模式

默认情况下,如果在进行调试微处理器时,使微处理器进入停止或待机模式,将失去调试连接。这是因为 CPU 内核失去了时钟。

然而,通过设置 DBGMCU_CR 寄存器中的某些配置位,可以在使用低功耗模式下调试软件。更多的细节请参考: 低功耗模式的调试支持。

6.4 电源控制寄存器

表 17. 电源控制寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	PWR_CR	电源控制寄存器	0x00000000	小节 6.4.1
0x04	PWR_CSR	电源控制/状态寄存器	0x00000000	小节 6.4.2

6.4.1 电源控制寄存器 (PWR_CR)

地址偏移: 0x00

复位值: 0x0000 0000(从待机模式唤醒时清除)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved PLS			Reserved			PVDE	CSBF	CWUF	PDDS	LPDS				
			rw	rw	rw	rw					rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31 : 13	Reserved			始终读为 0。

Bit	Field	Туре	Reset	Description
12:9	PLS	rw	0x00	PVD 电平选择 (PVD level selection) 这些位用于选择电源电压监测器的电压阀值 0000: 1.8V 0100: 3.0V 1000: 4.2V 0001: 2.1V 0101: 3.3V 1001: 4.5V 0010: 2.4V 0110: 3.6V 1010: 4.8V 0011: 2.7V 0111: 3.9V 其他: 保留 注:详细说明参见数据手册中的电气特性部分。
8:5	Reserved			始终读为 0
4	PVDE	rw	0x00	电源电压监测器 (PVD) 使能 (Power voltage detector enable) 1 = 开启 PVD 0 = 禁止 PVD
3	CSBF	rw	0x00	清除待机位 (Clear standby flag) 始终读出为 0 1 = 清除 SBF 待机位 (写) 0 = 无功效
2	CWUF	rw	0x00	清除唤醒位 (Clear wakeup flag) 始终读出为 0 1 = 2 个系统时钟周期后清除 WUF 唤醒位 (写) 0 = 无功效
1	PDDS	rw	0x00	掉电深睡眠 (Power down deepsleep) 1 = CPU 进入深睡眠时进入待机模式 0 = CPU 进入深睡眠时进入停机模式
0	LPDS	rw	0x00	深睡眠下的低功耗 PDDS = 0 时,与 PDDS 位协同操作 1 = CPU 进入深睡眠时进入停机模式 0 = CPU 进入深睡眠时进入停机模式 当进入停机模式时,LPDS = 1 时的电流小于 LPDS = 0 时的电流 详见该芯片对应的数据手册。

6.4.2 电源控制/状态寄存器 (PWR_CSR)

地址偏移: 0x04

复位值: 0x0000 0000(从待机模式唤醒时不被清除)

与标准的 APB 读相比,读次寄存器需要额外的 APB 周期

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved						EWUP		Rese	erved			PVDO	SBF	WUF
							rw						rw	rw	rw

Bit	Field	Туре	Reset	Description
31 : 9	Reserved			始终读为 0。
8	EWUP	rw	0x00	使能 WKUP 引脚 (Enable WKUP pin) 1 = WKUP 引脚用于将 CPU 从待机模式唤醒,WKUP 引脚被强置为输入下拉的配置 (WKUP 引脚上的上升沿将系统从待机模式唤醒) 0 = WKUP 引脚为通用 I/O。WKUP 引脚上的事件不能将CPU 从待机模式唤醒 注: 在系统复位时清除这一位。
7:3	Reserved			始终读为 0
2	PVDO	rw	0x00	PVD 输出 (PVD output) 当 PVD 被 PVDE 位使能后该位才有效 1 = V _{DD} /V _{DDA} 低于由 PLS 选定的 PVD 阀值 0 = V _{DD} /V _{DDA} 高于由 PLS 选定的 PVD 阀值 注: 在待机模式下 PVD 被停止。因此,待机模式后或复位后,直 到设置 PVDE 位之前,该位为 0。
1	SBF	rw	0x00	待机标志 (Standby flag) 该位由硬件设置,并只能由 POR/PDR (上电/掉电复位) 或 设置电源控制寄存器 (PWR_CR) 的 CSBF 位清除。 1 = 系统进入待机模式 0 = 系统不在待机模式
0	WUF	rw	0x00	唤醒标志 (Wakeup flag) 该位由硬件设置,并只能由 POR/PDR (上电/掉电复位) 或 设置电源控制寄存器 (PWR_CR) 的 CWUF 位清除。 1 = 在 WKUP 引脚上发生唤醒事件或出现 RTC 闹钟事件 0 = 没有发生唤醒事件 注: 当 WKUP 引脚已经是高电平时,在(通过设置 EWUP 位)使 能 WKUP 引脚时,会检测到一个额外的事件。

7

备份寄存器 (BKP)

备份寄存器 (BKP)

7.1 BKP 简介

备份寄存器是 20 个 16 位的寄存器,可用来存储 20 个字节的用户应用程序数据。他们处在备份域里,当 1.5V 电源被切断,他们仍然由 V_{DD} 维持供电。当系统在待机模式下被唤醒,或系统复位或电源复位时,他们也不会被复位。

复位后,对备份寄存器和 RTC 的访问被禁止,并且备份域被保护以防止可能存在的意外的写操作。

执行以下操作可以使能对备份寄存器的访问。

• 通过设置寄存器 RCC_APB1ENR 的 PWREN 位来打开电源和后备接口的时钟。

7.2 BKP 特征

• 40 字节数据后备寄存器。

7.3 BKP 寄存器描述

可以用半字 (16位) 或字 (32位)的方式操作这些外设寄存器。

表 18. BKP 寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x10 + 4 × (n - 1)	BKP_DRn	备份数据寄存器 x	0x00000000	小节 7.3.1

7.3.1 备份数据寄存器 n(BKP_DRn)(n = 1...20)

地址偏移: 0x10 + 4 × (备份数据寄存器编号 - 1)

复位值: 0x0000

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								BK	P							
L																
	rw															

Bit	Field	Туре	Reset	Description
15 : 0	BKP	rw	0x0000	BKP: 备份数据
				这些位可以被用来写入用户数据。
				注意: BKP_DRn 寄存器不会被系统复位、电源复位、从待机模
				式唤醒所复位。它们可以由备份域复位来复位或 (如果侵入检测
				引脚 TAMPER 功能被开启时) 由侵入引脚事件复位。

8

复位和时钟控制 (RCC)

复位和时钟控制 (RCC)

8.1 复位

支持两种复位形式,分别为系统复位、上电复位。

8.1.1 系统复位

系统复位将复位除时钟控制寄存器 CSR 中的复位标志、电源控制寄存器 CSR 中的待机和唤醒标志以及备份区域中的寄存器以外的所有寄存器。

当以下事件中的一件发生时,产生一个系统复位:

- 1. NRST 管脚上的低电平 (外部复位)
- 2. 窗口看门狗计数终止 (WWDG 复位)
- 3. 独立看门狗计数终止 (IWDG 复位)
- 4. 软件复位 (SW 复位)

可通过查看 RCC CSR 控制状态寄存器中的复位状态标志位识别复位事件来源。

软件复位

通过将 CPU 中断应用和复位控制寄存器中的 SYSRESETREQ 位置'1',可实现软件复位。

8.1.2 电源复位

当以下事件中之一发生时,产生电源复位:

- 1. 上电/掉电复位 (POR/PDR 复位)
- 2. 从待机模式中返回

电源复位将复位除了备份区域外的所有寄存器。

图 11复位源将最终作用于 RESET 管脚,并在复位过程中保持低电平。复位入口矢量被固定在地址 0x0000_0004。

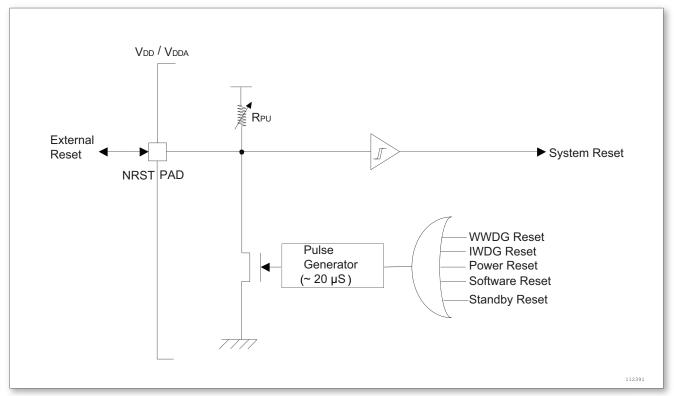


图 11. 复位电路

8.2 时钟

四种不同的时钟源可被用来驱动系统时钟 (SYSCLK):

- HSI 振荡器时钟
- HSE 振荡器时钟
- PLL 时钟
- LSI 时钟

当不被使用时,任一个时钟源都可被独立地启动或关闭,由此优化系统功耗。

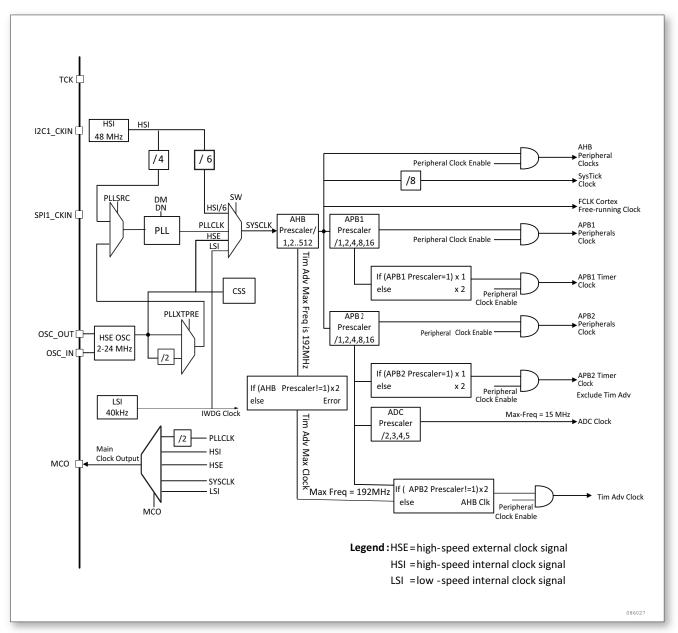


图 12. 时钟树

用户可通过多个预分频器配置 AHB、高速 APB(APB2) 和低速 APB(APB1) 域的频率。AHB 和 APB1, APB2 域的最大频率是 96Hz。

RCC 通过 AHB 时钟 8 分频后供给 CPU 系统定时器的 (SysTick) 外部时钟。通过对 SysTick 控制与状态寄存器的设置,可选择上述时钟或 AHB 时钟作为 SysTick 时钟。ADC 时钟由高速 APB2 时钟分频后获得。

定时器时钟频率分配由硬件按以下2种情况自动设置:

- 1. 如果相应的 APB 预分频系数是 1,定时器的时钟频率与所在 APB 总线频率一致。
- 2. 否则, 定时器的时钟频率被设为与其相连的 APB 总线频率的 2 倍。

FCLK 是 CPU 的自由运行时钟。

8.2.1 HSE 时钟

高速外部时钟信号 (HSE) 由以下两种时钟源产生:

- · HSE 外部晶体/陶瓷谐振器
- HSE 用户外部时钟

为了减少时钟输出的失真和缩短启动稳定时间,晶体/陶瓷谐振器和负载电容器必须尽可能 地靠近振荡器管脚。负载电容值必须根据所选择的振荡器来调整。

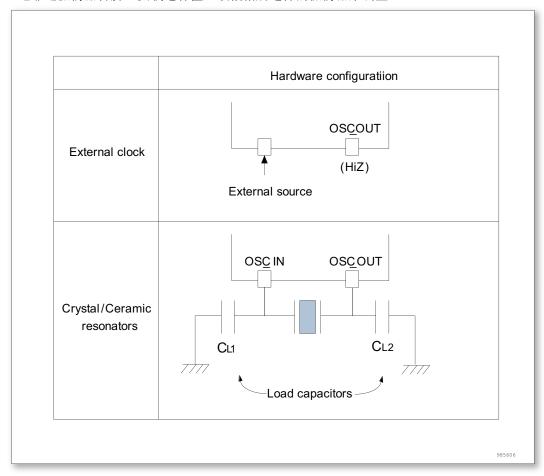


图 13. 时钟源

外部时钟源 (HSE 旁路)

在这个模式里,必须提供外部时钟。它的频率最高可达 24MHz。用户可通过设置在时钟控制寄存器中的 HSEBYP 和 HSEON 位来选择这一模式。外部时钟信号 (50% 占空比的方波、正弦波) 必须连到 OSC_IN 管脚,同时保证 OSC_OUT 管脚悬空。

外部晶体/陶瓷谐振器 (HSE 晶体)

外部振荡器可为系统提供更为精确的主时钟。相关的硬件配置可参考图 **13**,进一步信息可参考数据手册的电气特性部分。

在时钟控制寄存器 RCC_CR 中的 HSERDY 位用来指示高速外部振荡器是否稳定。在启动时,直到这一位被硬件置'1',时钟才被释放出来。如果在时钟中断寄存器 RCC_CIR 中允许产生中断,将会产生相应中断。

HSE 晶体可以通过设置时钟控制寄存器里 RCC_CR 中的 HSEON 位被启动和关闭。

8.2.2 HSI 时钟

HSI 时钟信号由内部 HSI 的振荡器产生,可直接作为系统时钟或作为 PLL 输入。HSI 振荡器能够在不需要任何外部器件的条件下提供系统时钟。它的启动时间比 HSE 晶体振荡器短。然而,即使在校准之后它的时钟频率精度仍较差。

校准

制造工艺决定了不同芯片的振荡器频率会不同,这就是为什么每个芯片的 HSI 时钟频率在出厂前已经被校准到 1%(25°C) 的原因。系统复位时,工厂校准值被装载到时钟控制寄存器的 HSICAL 位。

时钟控制寄存器中的 HSIRDY 位用来指示 HSI 振荡器是否稳定。在时钟启动过程中,直到这一位被硬件置'1',HSI 振荡器输出时钟才被释放。HSI 振荡器可由时钟控制寄存器中的 HSION 位来启动和关闭。

如果 HSE 晶体振荡器失效, HSI 时钟会被作为备用时钟源, 参考小节 8.2.6。

8.2.3 PLL

内部 PLL 可以用来倍频 HSI 振荡器的输出时钟或 HSE 晶体输出时钟。参考图 12和时钟 控制寄存器。PLL 的设置 (选择 HSI 振荡器或 HSE 振荡器为 PLL 的输入时钟,和选择倍 频因子) 必须在其被激活前完成。一旦 PLL 被激活,这些参数就不能被改动。

如果 PLL 中断在时钟中断寄存器里被允许,当 PLL 准备就绪时,可产生中断请求。

8.2.4 LSI 时钟

LSI 振荡器担当一个低功耗时钟源的角色,它可以在停机和待机模式下保持运行,为独立看门狗和自动唤醒单元提供时钟。LSI 时钟频率大约 40KHz。进一步信息请参考数据手册中有关电气特性部分。

LSI 振荡器可以通过控制/状态寄存器 (RCC_CSR) 里的 LSION 位来启动或关闭。在控制/状态寄存器 (RCC_CSR) 里的 LSIRDY 位指示低速内部振荡器是否稳定。在启动阶段,直到这个位被硬件设置为'1'后,此时钟才被释放。如果在时钟中断寄存器 (RCC_CIR) 里被允许,将产生 LSI 中断请求。

8.2.5 系统时钟 (SYSCLK) 选择

系统复位后,HSI 振荡器被选为系统时钟。当时钟源被直接或通过 PLL 间接作为系统时钟时,它将不能被停止。

只有当目标时钟源准备就绪了(经过启动稳定阶段的延迟或 PLL 稳定),从一个时钟源到另一个时钟源的切换才会发生。在被选择时钟源没有就绪时,系统时钟的切换不会发生。直至目标时钟源就绪,才发生切换。

在时钟配置寄存器 (RCC_CFGR) 里的状态位指示哪个时钟已经准备好了,哪个时钟目前被用作系统时钟。

8.2.6 时钟安全系统 (CSS)

时钟安全系统可以通过软件被激活。一旦其被激活,时钟监测器将在 HSE 振荡器启动延迟后被使能,并在 HSE 时钟关闭后关闭。

如果 HSE 时钟发生故障, HSE 振荡器被自动关闭, 时钟失效事件将被送到高级定时器 TIM1 的刹车输入端, 并产生时钟安全中断 CSS, 允许软件完成营救操作。此 CSS 中断连接到 CPU 的 NMI 中断。

注:一旦 CSS 被激活,并且 HSE 时钟出现故障, CSS 中断就产生,并且 NMI 也自动产生。NMI 将被不断执行,直到 CSS 中断挂起位被清除。因此,在 NMI 的处理程序中必须通过设置时钟中断寄存器 (RCC_CIR) 里的 CSSC 位来清除 CSS 中断。

如果 HSE 振荡器被直接或间接地作为系统时钟,(间接的意思是:它被作为 PLL 输入时钟,并且 PLL 时钟被作为系统时钟),时钟故障将导致系统时钟自动切换到 HSI 振荡器,同时外部 HSE 振荡器被关闭。在时钟失效时,如果 HSE 振荡器时钟 (被分频或未被分频) 是用作系统时钟的 PLL 的输入时钟,PLL 也将被关闭。

8.2.7 看门狗时钟

如果独立看门狗已经由硬件选项或软件启动,LSI 振荡器将被强制在打开状态,在 LSI 振荡器稳定后,时钟供应给 IWDG。

8.2.8 时钟输出

微控制器允许输出时钟信号到外部 MCO 管脚。

相应的 GPIO 端口寄存器必须被配置为相应功能。以下 5 个时钟信号可被选作 MCO 时钟:

- SYSCLK
- HSI
- HSE
- LSI
- PLLCLK/2
 - 时钟的选择由时钟配置寄存器 (RCC_CFGR) 中的 MCO[2: 0] 位控制。

8.3 RCC 寄存器堆与存储器映射描述

表 19. RCC 寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	RCC_CR	时钟控制寄存器	0x0000XX03	小节 8.3.1
0x04	RCC_CFGR	时钟配置寄存器	0x00000000	小节 8.3.2
0x08	RCC_CIR	时钟中断寄存器	0x00000000	小节 8.3.3
0x0C	RCC_APB2RSTR	APB2 外设复位寄存器	0x00000000	小节 8.3.4
0x10	RCC_APB1RSTR	APB1 外设复位寄存器	0x00000000	小节 8.3.5
0x14	RCC_AHBENR	AHB 外设时钟使能寄存器	0x00000014	小节 8.3.6
0x18	RCC_APB2ENR	APB2 外设时钟使能寄存器	0x00000000	小节 8.3.7
0x1C	RCC_APB1ENR	APB1 外设时钟使能寄存器	0x00000000	小节 8.3.8
0x20	RCC_BDCR	备份域控制寄存器	0x00000000	小节 8.3.9
0x24	RCC_CSR	控制状态寄存器	0xXC000000	小节 8.3.10
0x28	RCC_AHBRSTR	AHB 外设复位寄存器	0x00000000	小节 8.3.11
0x40	RCC_SYSCFG	系统配置寄存器	0x00001403	小节 8.3.12

Offset	Acronym	Register Name	Reset	Section
0x44	RCC_HSIDLY	HSI 延迟寄存器	0x0000080	小节 8.3.13
0x48	RCC_HSEDLY	HSE 延迟寄存器	0x000003E8	小节 8.3.14

8.3.1 时钟控制寄存器 (RCC_CR)

地址偏移: 0x00

复位值: 0x0000 XX03

访问: 无等待状态, 字, 半字和字节访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		PLL	MUL			PLLRDY	PLLON	Res.		PLLDIV		CSSON	HSEBYP	HSERDY	HSEON
rw	rw	rw	rw	rw	rw	r	rw		rw	rw	rw	rw	rw	r	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved			HSI	CAL				Res	served			HSITEN	HSIRDY	HSION
		r	r	r	r	r	r						rw	r	rw

Bit	Field	Туре	Reset	Description
31 : 26	PLLMUL	rw	0x00	PLLMUL: PLL 倍频系数 (PLL multiplication factor)
25	PLLRDY	r	0x00	PLLRDY: PLL 时钟就绪标志 (PLL clock ready flag) PLL 锁定后由硬件置'1'。 0: PLL 未锁定 1: PLL 锁定
24	PLLON	rw	0x00	PLLON: PLL 使能 (PLL enable) 由软件置'1'或清零。 当进入待机和停机模式时,该位由硬件清零。当 PLL 时钟被用作或被选择将要作为系统时钟时,该位不能被清零。 0: PLL 关闭 1: PLL 使能
23	Reserved			始终读为 0。
22 : 20	PLLDIV	rw	0x00	PLLDIV: (PLL divider factor) PLL 配置公式: F _{CLKO} = F _{REFIN} * N / M 其中: F _{CLKO} 是 PLL 输出频率, F _{REFIN} 是 PLL 输入参考时 钟频率 M = PLLDIV + 1 N = PLLMUL + 1
19	CSSON	rw	0x00	CSSON: 时钟安全系统使能 (Clock security system enable) 由软件置 '1' 或清零以使能时钟监测器。 0: 时钟监测器关闭 1: 如果外部振荡器就绪,时钟监测器开启

Bit	Field	Туре	Reset	Description
18	HSEBYP	rw	0x00	HSEBYP:外部高速时钟旁路 (External high-speed clock
				bypass)
				在调试模式下由软件置'1'或清零来旁路外部晶体振荡器。
				只有外部振荡器关闭的情况下,才能写入该位。
				0: 外部振荡器没有旁路
				1: 外部外部晶体振荡器被旁路
17	HSERDY	r	0x00	HSERDY: 外部高速时钟就绪标志 (External high-speed
				clock ready flag)
				由硬件置'1'来指示外部时钟已经稳定。
				0: 外部时钟没有就绪
				1: 外部时钟就绪
16	HSEON	rw	0x00	HSEON:外部高速时钟使能 (External high-speed clock en-
				able)
				由软件置"1"或清零。
				当进入待机和停机模式时,该位由硬件清零,关闭外部时
				钟。当外部时钟被用作或被选择将要作为系统时钟时,该
				位不能被清零。 0: HSE 振荡器关闭
				1: HSE 振荡器开启
15: 14	Reserved			始终读为 0
13: 8	HSICAL	r	0xXX	HSICAL:内部高速时钟校准(Internal high-speed clock cal-
		•	•/0 0 1	ibration)
				在系统启动时,这些位被自动初始化。
7: 3	Reserved			始终读为 0。
2	HSITEN	rw	0x00	HSITEN:内部高速时钟温度校准使能
				由软件置'1'或清零。
				0: 内部 HSI 时钟不自动跟随温度校准
				1: 内部 HSI 时钟自动跟随温度校准
1	HSIRDY	r	0x01	HSIRDY: 内部高速时钟就绪标志 (Internal high-speed
				clock ready flag)
				由硬件置'1'来指示内部 8MHz 时钟已经稳定。在 HSION
				位清零后,该位需要 6 个内部 8MHz 时钟周期清零。
				0: 内部 8MHz 时钟没有就绪
				1: 内部 8MHz 时钟就绪
				0: 内部 8MHz 时钟没有就绪

Bit	Field	Туре	Reset	Description
0	HSION	rw	0x01	HSION:内部高速时钟使能 (Internal high-speed clock en-
				able)
				由软件置'1'或清零。
				当从待机和停机模式返回或用作系统时钟的外部时钟发生
				故障时,该位由硬件置'1'来启动内部 8MHz 的振荡器。
				当内部 8MHz 时钟被直接或间接地用作或被选择将要作为
				系统时钟时,该位不能被清零。
				0: 内部 8MHz 时钟关闭
				1: 内部 8MHz 时钟开启

8.3.2 时钟配置寄存器 (RCC_CFGR)

地址偏移: 0x04

复位值: 0x0000 0000

访问: 无等待状态, 字, 半字和字节访问

只有当访问发生在时钟切换时,才会插入1或2个等待周期。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PLI	_DN	PLL	ICTRL	Res.		MCO				Rese	erved			PLLXTPRE	PLLSRC
rw	rw	rw	rw		rw	rw	rw							rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	CKOFF _SFT		PPRE2			PPRE1			HP	RE		SV	VS	S	W
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	r	r	rw	rw

Bit	Field	Type	Reset	Description
31 : 30	PLLDN	rw	0x00	PLL 配置系数扩展
29 : 28	PLLICTRL	rw	0x00	PLL 电流控制
				00 : 10μΑ;
				01 : 20μΑ;
				10 : 30μΑ;
				11 : 40μA;
27	Reserved			始终读为 0

Bit	Field	Туре	Reset	Description
26:24	MCO	rw	0x00	MCO: 微控制器时钟输出 (Microcontroller clock output) 由软件置 '1'或清零。 00x:没有时钟输出; 010:LSI 时钟输出; 100:系统时钟 (SYSCLK) 输出; 101:HSI 时钟输出; 110:HSE 时钟输出; 111:PLL 时钟 2 分频后输出。 注意: 1. 该时钟输出在启动和切换 MCO 时钟源时可能会被截断。 2. 系统时钟作为输出至 MCO 管脚时,请保证输出时钟频率不超过 50MHz(IO 口最高频率)
23: 18	Reserved			始终读为 0
17	PLLXTPRE	rw	0x00	PLLXTPRE: HSE 分频器作为 PLL 输入 (HSE divider for PLL entry) 由软件置 '1' 或清 '0' 来分频 HSE 后作为 PLL 输入时钟。该位只有在 PLL 关闭时才可以被写入。 0: HSE 不分频 1: HSE2 分频
16	PLLSRC	rw	0x00	PLLSRC: PLL 输入时钟源 (PLL entry clock source) 由软件置'1'或清'0'来选择 PLL 输入时钟源。该位只有在 PLL 关闭时才可以被写入。 0: HSI 时钟 4 分频后作为 PLL 输入时钟 1: HSE 时钟作为 PLL 输入时钟
15	Reserved			始终读为 0
14	CKOFFSFT	rw	0x00	CKOFFSFT: STOP 模式下时钟关闭控制位 0: 在 STOP 下,硬件会自动关闭 PLL、HSI、HSE 和 PLL_LDO 1: 在 STOP 下,硬件不会自动关闭 PLL、HSI、HSE 和 PLL_LDO,用户可通过配置 RCC_CR 寄存器来关闭相应 时钟
13: 11	PPRE2	rw	0x00	PPRE2: 高速 APB 预分频 (APB2)(APB high-speed prescaler(APB2)) 由软件置 '1' 或清 '0' 来控制高速 APB2 时钟 (PCLK2) 的预分频系数。 0xx: HCLK 不分频 100: HCLK 2 分频 101: HCLK 4 分频 110: HCLK 8 分频 111: HCLK 16 分频

Bit	Field	Туре	Reset	Description
10: 8	PPRE1	rw	0x00	PPRE1: 低速 APB 预分频 (APB1)(APB low-speed prescaler(APB1))0 由软件置 '1' 或清 '0' 来控制低速 APB1 时钟 (PCLK1) 的预分频系数。 0xx: HCLK 不分频 100: HCLK 2 分频 101: HCLK 4 分频 110: HCLK 8 分频 111: HCLK 16 分频
7: 4	HPRE	rw	0x00	HPRE: AHB 预分频 (AHB Prescaler) 由软件置'1'或清'0'来控制 AHB 时钟的预分频系数。 0xxx: SYSCLK 不分频 1000: SYSCLK 2 分频 1001: SYSCLK 4 分频 1010: SYSCLK 8 分频 1011: SYSCLK 16 分频 1100: SYSCLK 64 分频 1101: SYSCLK 128 分频 1111: SYSCLK 256 分频 1111: SYSCLK 512 分频 注意: 1. 当 AHB 时钟的预分频系数大于 1 时,必须开启预取缓冲器。详见读闪存存储器一节。
3: 2	SWS	r	0x00	SWS: 系统时钟切换状态 (System clock switch status) 由硬件置 '1' 或清 '0' 来指示哪一个时钟源被作为系统时钟。 00: HSI 6 分频作为系统时钟; 01: HSE 作为系统时钟; 10: PLL 输出作为系统时钟; 11: LSI 输出作为系统时钟。
1: 0	SW	rw	0x00	SW: 系统时钟切换 (System clock switch) 由软件置 '1' 或清 '0' 来选择系统时钟源。 在从停止或待机模式中返回时或直接或间接作为系统时钟的 HSE 出现故障时,由硬件强制选择 00: HSI 6 分频作为系统时钟; 01: HSE 作为系统时钟; 10: PLL 输出作为系统时钟; 11: LSI 输出作为系统时钟。

8.3.3 时钟中断寄存器 (RCC_CIR)

地址偏移: 0x08

访问: 无等待周期, 字, 半字和字节访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Rese	erved				CSSC	Res	erved	PLL RDYC	HSE RDYC	HSI RDYC	Res.	LSI RDYC
								rc_w1			rc_w1	rc_w1	rc_w1		rc_w1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserve	d	PLL RDYIE	HSE RDYIE	HSI RDYIE	Res.	LSI RDYIE	CSSF	Res	erved	PLL RDYF	HSE RDYF	HSI RDYF	Res.	LSI RDYF
			rw	rw	rw		rw	r			r	r	r		r

Bit	Field	Туре	Reset	Description
31 : 24	Reserved			始终读为 0
23	CSSC	rc_w1	0x00	CSSC: 清除时钟安全系统中断 (Clock security system interrupt clear) 由软件置 '1' 来清除 CSSF 安全系统中断标志位 CSSF。
				0: 无作用 1: 清除 CSSF 安全系统中断标志位
22 : 21	Reserved			始终读为 0
20	PLLRDYC	rc_w1	0x00	PLLRDYC: 清除 PLL 就绪中断 (PLL ready interrupt clear) 由软件置 '1' 来清除 PLL 就绪中断标志位 PLLRDYF。 0: 无作用 1: 清除 PLL 就绪中断标志位 PLLRDYF
19	HSERDYC	rc_w1	0x00	HSERDYC: 清除 HSE 就绪中断 (HSE ready interrupt clear) 由软件置 '1' 来清除 HSE 就绪中断标志位 HSERDYF。 0: 无作用 1: 清除 HSE 就绪中断标志位 HSERDYF
18	HSIRDYC	rc_w1	0x00	HSIRDYC: 清除 HSI 就绪中断 (HSI ready interrupt clear) 由软件置 '1'来清除 HSI 就绪中断标志位 HSIRDYF。 0: 无作用 1: 清除 HSI 就绪中断标志位 HSIRDYF
17	Reserved			始终读为 0
16	LSIRDYC	rc_w1	0x00	LSIRDYC: 清除 LSI 就绪中断 (LSI ready interrupt clear) 由软件置 '1'来清除 LSI 就绪中断标志位 LSIRDYF。 0: 无作用 1: 清除 LSI 就绪中断标志位 LSIRDYF
15: 13	Reserved			始终读为 0
12	PLLRDYIE	rw	0x00	PLLRDYIE: PLL 就绪中断使能 (PLL ready interrupt enable) 由软件置 '1' 或清 '0' 来使能或关闭 PLL 就绪中断。 0: PLL 就绪中断关闭 1: PLL 就绪中断使能

Bit	Field	Туре	Reset	Description
11	HSERDYIE	rw	0x00	HSERDYIE: HSE 就绪中断使能 (HSE ready interrupt enable) 由软件置 '1' 或清 '0' 来使能或关闭外部振荡器就绪中断。 0: HSE 就绪中断关闭 1: HSE 就绪中断使能
10	HSIRDYIE	rw	0x00	HSIRDYIE: HSI 就绪中断使能 (HSI ready interrupt enable) 由软件置 '1' 或清 '0' 来使能或关闭内部 8MHz 振荡器就绪中断。 0: HSI 就绪中断关闭 1: HSI 就绪中断使能
9	Reserved			始终读为 0
8	LSIRDYIE	rw	0x00	LSIRDYIE: LSI 就绪中断使能 (LSI ready interrupt enable) 由软件置 '1' 或清 '0' 来使能或关闭内部 40KHz 振荡器 就绪中断。 0: LSI 就绪中断关闭 1: LSI 就绪中断使能
7	CSSF	r	0x00	CSSF: 时钟安全系统中断标志 (Clock security system interrupt flag) 在外部振荡器时钟出现故障时,由硬件置'1'。 由软件通过置'1'CSSC 位来清除。 0: 无 HSE 时钟失效产生的安全系统中断 1: HSE 时钟失效导致了时钟安全系统中断
6: 5	Reserved			始终读为 0
4	PLLRDYF	r	0x00	PLLRDYF: PLL 就绪中断标志 (PLL ready interrupt flag) 在 PLL 就绪且 PLLRDYIE 位被置'1'时,由硬件置'1'。由软件通过置'1'PLLRDYC 位来清除。 0: 无 PLL 上锁产生的时钟就绪中断 1: PLL 上锁导致时钟就绪中断
3	HSERDYF	r	0x00	HSERDYF: HSE 就绪中断标志 (HSE ready interrupt flag) 在外部低速时钟就绪且 HSERDYIE 位被置'1'时,由硬件置'1'。 由软件通过置'1'HSERDYC 位来清除。 0: 无外部振荡器产生的时钟就绪中断 1: 外部振荡器导致时钟就绪中断
2	HSIRDYF	r	0x00	HSIRDYF: HSI 就绪中断标志 (HSI ready interrupt flag) 在内部高速时钟就绪且 HSIRDYIE 位被置'1'时,由硬件置'1'。由软件通过置'1'HSIRDYC 位来清除。 0: 无内部 HSI 振荡器产生的时钟就绪中断 1: 内部 HSI 振荡器导致时钟就绪中断
1	Reserved			始终读为 0

Bit	Field	Туре	Reset	Description
0	LSIRDYF	r	0x00	LSIRDYF: LSI 就绪中断标志 (LSI ready interrupt flag)
				在内部低速时钟就绪且 LSIRDYIE 位被置'1'时,由硬件
				置'1'。
				由软件通过置'1'LSIRDYC 位来清除。
				0: 无内部 40KHz 振荡器产生的时钟就绪中断;
				1: 内部 40KHz 振荡器导致时钟就绪中断。

8.3.4 APB2 外设复位寄存器 (RCC_APB2RSTR)

地址偏移: 0x0C

复位值: 0x0000 0000

访问: 无等待周期, 字, 半字和字节访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			F	Reserve	d			PWM	DBGMCU		Reserved		TIM17	TIM16	TIM14
								rw	rw				rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
COMP	UART1	TIM8	SPI1	TIM1	ADC2	ADC1				Res	served				SYSCFG
rw	rw	rw	rw	rw	rw	rw									rw

Bit	Field	Туре	Reset	Description
31: 24	Reserved			始终读为 0
23	PWM	rw	0x00	PWM: PWM 复位使能信号
				0: 无作用
				1:复位 PWM 模块
22	DBGMCU	rw	0x00	DBGMCU: DBGMCU 复位 (DBGMCU reset)
21: 19	Reserved			始终读为 0
18	TIM17	rw	0x00	TIM17: TIM17 定时器复位 (TIM17 timer reset)
				由软件置'1'或清'0'。
				0: 无作用
				1. 复位 TIM17 定时器
17	TIM16	rw	0x00	TIM16: TIM16 定时器复位 (TIM16 timer reset)
				由软件置'1'或清'0'。
				0: 无作用
				1. 复位 TIM16 定时器
16	TIM14	rw	0x00	TIM14: TIM14 定时器复位 (TIM14 timer reset)
				由软件置'1'或清'0'。
				0: 无作用
				1. 复位 TIM14 定时器
15	COMP	rw	0x00	COMPRST: 比较器复位 (Comparator reset)
				由软件置'1'或清'0'。
				0: 无作用
				1. 复位比较器接口

Bit	Field	Туре	Reset	Description
14	UART1	rw	0x00	UART1: UART1 复位 (UART1 reset)
				由软件置'1'或清'0'。
				0: 无作用
				1:复位 UART1
13	TIM8	rw	0x00	TIM8: TIM8 复位使能信号
				0: 无作用
				1: 复位 TIM8 模块
12	SPI1	rw	0x00	SPI1: SPI1 复位 (SPI1 reset)
				由软件置'1'或清'0'。
				0: 无作用
				1: 复位 SPI1
11	TIM1	rw	0x00	TIM1: TIM1 定时器复位 (TIM1 timer reset)
				由软件置'1'或清'0'。
				0: 无作用
				1: 复位 TIM1 定时器
10	ADC2	rw	0x00	ADC2:ADC2 接口复位 (ADC2 interface reset)
				由软件置'1'或清'0'。
				0: 无作用
•	1001		0.00	1: 复位 ADC2 接口
9	ADC1	rw	0x00	ADC1:ADC 接口复位 (ADC1 interface reset)
				由软件置'1'或清'0'。
				0: 无作用
0. 4	Danaman			1: 复位 ADC1 接口
8: 1	Reserved		000	始终读为 0
0	SYSCFG	rw	0x00	SYSCFG:系统配置寄存器复位 (System Configuration register reset)
				ister reset)
				由软件置'1'或清'0'。 0: 无作用
				1: 复位 SYSCFG

8.3.5 APB1 外设复位寄存器 (RCC_APB1RSTR)

地址偏移: 0x10

复位值: 0x0000 0000

访问: 无等待周期, 字, 半字和字节访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserve	d	PWR			Rese	rved			I2C1	R	eserved		UART2	Res.
			rw							rw				rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	SPI2	Res	erved	WWDG				Rese	erved					TIM3	TIM2
	rw			rw										rw	rw

Bit	Field	Туре	Reset	Description
31 : 29	Reserved			始终读为 0
28	PWR	rw	0x00	PWR: 电源接口复位 (Power interface reset) 由软件置 '1' 或清 '0'。 0: 无作用 1: 复位电源接口
27 : 22	Reserved			始终读为 0
21	I2C1	rw	0x00	I2C1: I2C1 复位 (I2C1 reset) 由软件置'1'或清'0'。 0: 无作用 1: 复位 I2C1
20 : 18	Reserved			始终读为 0
17	UART2	rw	0x00	UART2: UART2 复位 (UART2 reset) 由软件置'1'或清'0'。 0: 无作用 1: 复位 UART2
16 : 15	Reserved			始终读为 0
14	SPI2	rw	0x00	SPI2: SPI2 复位 (SPI2 reset) 由软件置 '1' 或清 '0'。 0: 无作用 1: 复位 SPI2
13 : 12	Reserved			始终读为 0
11	WWDG	rw	0x00	WWDG: 窗口看门狗复位 (Window watchdog reset) 由软件置 '1' 或清 '0'。 0: 无作用 1: 复位窗口看门狗
10 : 2	Reserved			始终读为 0
1	TIM3	rw	0x00	TIM3: 定时器 3 复位 (Timer3 reset) 由软件置 '1' 或清 '0'。 0: 无作用 1: 复位 TIM3 定时器
0	TIM2	rw	0x00	TIM2: 定时器 2 复位 (Timer2 reset) 由软件置'1'或清'0'。 0: 无作用 1: 复位 TIM2 定时器

8.3.6 AHB 外设时钟使能寄存器 (RCC_AHBENR)

地址偏移: 0x14

复位值: 0x0000 0014

访问: 无等待周期,字,半字和字节访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Re	eserved			HWDIV	HSQRT		Res	erved		GPIOD	GPIOC	GPIOB	GPIOA	Res.
					rw	rw					rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Reserve	ed				CRC	Res.	FLASH	Res.	SRAM	Res.	DMA
									rw		rw		rw		rw

Bit	Field	Туре	Reset	Description
31 : 27	Reserved			始终读为 0
26	HWDIV	rw	0x00	HWDIV: 硬件除法时钟使能信号
				0: 关闭 HWDIV 时钟
				1: 开启 HWDIV 时钟
25	HSQRT	rw	0x00	HSQRT: 硬件开方时钟使能信号
				0: 关闭 HSQRT 时钟
				1: 开启 HSQRT 时钟
24 : 21	Reserved			始终读为 0
20	GPIOD	rw	0x00	GPIOD: GPIOD 时钟使能 (GPIOD clock enable)
				0: GPIOD 时钟关闭
10	ODIOO		0.00	1: GPIOD 时钟开启
19	GPIOC	rw	0x00	GPIOC: GPIOC 时钟使能 (GPIOC clock enable)
				0: GPIOC 时钟关闭 1: GPIOC 时钟开启
18	GPIOB	rw	0x00	GPIOB: GPIOB 时钟使能 (GPIOB clock enable)
10	GFIOB	I VV	UXUU	0: GPIOB 时钟关闭
				1: GPIOB 时钟开启
17	GPIOA	rw	0x00	GPIOA: GPIOA 时钟使能 (GPIOA clock enable)
				0: GPIOA 时钟关闭
				1: GPIOA 时钟开启
16 : 7	Reserved			始终读为 0
6	CRC	rw	0x00	CRC: CRC 时钟使能 (CRC clock enable)
				由软件置'1'或清'0'。
				0: CRC 时钟关闭
				1: CRC 时钟开启
5	Reserved			始终读为 0
4	FLASH	rw	0x01	FLASH: FLASH 时钟使能 (FLASH clock enable)
				0: FLASH 时钟关闭
_				1: FLASH 时钟开启
3	Reserved			始终读为 0
2	SRAM	rw	0x01	SRAM: SRAM 时钟使能 (SRAM interface clock enable)
				由软件置'1'或清'0'来开启或关闭睡眠模式时 SRAM
				时钟。
				0: 睡眠模式时 SRAM 时钟关闭
				1:睡眠模式时 SRAM 时钟开启

Bit	Field	Type	Reset	Description
1	Reserved			始终读为 0
0	DMA	rw	0x00	DMA: DMA 时钟使能 (DMA clock enable) 由软件置'1'或清'0'。 0: DMA 时钟关闭 1: DMA 时钟开启

8.3.7 APB2 外设时钟使能寄存器 (RCC_APB2ENR)

地址偏移: 0x18

复位值: 0x0000 0000

访问: 无等待周期,字,半字和字节访问

注: 当外设时钟没有启动时, 软件不能读出外设寄存器的数值

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			F	Reserve	b			PWM	DBGMCU		Reserved	l	TIM17	TIM16	TIM14
								rw	rw				rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
COMP	UART1	TIM8	SPI1	TIM1	ADC2	ADC1				Res	served				SYSCFG
rw	rw	rw	rw	rw	rw	rw									rw

Bit	Field	Туре	Reset	Description
31: 24	Reserved			始终读为 0
23	PWM	rw	0x00	PWM: PWM 控制时钟使能信号
				0: PWM 时钟关闭
				1: PWM 时钟开启
22	DBGMCU	rw	0x00	DBGMCU 使能 (DBGMCU enable)
21: 19	Reserved			始终读为 0
18	TIM17	rw	0x00	TIM17: TIM17 定时器使能 (TIM17 timer enable)
				由软件置'1'或清'0'。
				0: TIM17 定时器时钟关闭
				1: TIM17 定时器时钟开启
17	TIM16	rw	0x00	TIM16: TIM16 定时器使能 (TIM16 timer enable)
				由软件置'1'或清'0'。
				0: TIM16 定时器时钟关闭
				1: TIM16 定时器时钟开启
16	TIM14	rw	0x00	TIM14: TIM14 定时器使能 (TIM14 timer enable)
				由软件置'1'或清'0'。
				0: TIM14 定时器时钟关闭 par 1: TIM14 定时器时钟开启
15	COMP	rw	0x00	COMP: 比较器使能 (Comparator enable)
				由软件置'1'或清'0'。
				0: 比较器接口时钟关闭
				1: 比较器接口时钟开启

Bit	Field	Туре	Reset	Description
14	UART1	rw	0x00	UART1: UART1 时钟使能 (UART1 clock enable)
				由软件置'1'或清'0'。
				0: UART1 时钟关闭
				1: UART1 时钟开启
13	TIM8	rw	0x00	TIM8: TIM8 定时器使能 (TIM8 timer enable)
				由软件置'1'或清'0'。
				0: TIM8 定时器时钟关闭
				1: TIM8 定时器时钟开启
12	SPI1	rw	0x00	SPI1: SPI1 时钟使能 (SPI 1 clock enable)
				由软件置'1'或清'0'。
				0: SPI1 时钟关闭
				1: SPI1 时钟开启
11	TIM1	rw	0x00	TIM1: TIM1 定时器时钟使能 (TIM1 Timer clock enable)
				由软件置'1'或清'0'。
				0: TIM1 定时器时钟关闭
				1: TIM1 定时器时钟开启
10	ADC2	rw	0x00	ADC2: ADC2 接口时钟使能 (ADC2 interface clock enable)
				由软件置'1'或清'0'。
				0: ADC2 接口时钟关闭
				1: ADC2 接口时钟开启
9	ADC1	rw	0x00	ADC1: ADC1 接口时钟使能 (ADC1 interface clock enable)
				由软件置'1'或清'0'。
				0: ADC1 接口时钟关闭
				1: ADC1 接口时钟开启
8: 1	Reserved			始终读为 0
0	SYSCFG	rw	0x00	SYSCFGEN: 系统配置寄存器时钟使能 (System configu-
				ration register enable)
				由软件置'1'或清'0'。
				0: 系统配置寄存器时钟关闭
				1: 系统配置寄存器时钟开启

8.3.8 APB1 外设时钟使能寄存器 (RCC_APB1ENR)

地址偏移: 0x1C

复位值: 0x0000 0000

访问: 无等待周期, 字, 半字和字节访问

注: 当外设时钟没有启动时, 软件不能读出外设寄存器的数值, 返回的数值始终是 0x0

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ı	Reserve	d	PWR			Rese	erved			I2C1		Reserve	d	UART2	Res.
			rw							rw				rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	SPI2	Rese	erved	WWDG				F	Reserve	ed				TIM3	TIM2
	rw			rw										rw	rw

Bit	Field	Туре	Reset	Description
31 : 29	Reserved			始终读为 0
28	PWR	rw	0x00	PWR: 电源接口时钟使能 (Power interface clock enable) 由软件置 '1' 或清 '0'。 0: 电源接口时钟关闭 1: 电源接口时钟开启
27: 22	Reserved			始终读为 0
21	I2C1	rw	0x00	I2C1: I2C1 时钟使能 (I2C1 clock enable) 由软件置 '1' 或清 '0'。 0: I2C1 时钟关闭 1: I2C1 时钟开启
20: 18	Reserved			始终读为 0
17	UART2	rw	0x00	UART2: UART2 时钟使能 (UART2 clock enable) 由软件置'1'或清'0'。 0: UART2 时钟关闭 1: UART2 时钟开启
16: 15	Reserved			始终读为 0
14	SPI2	rw	0x00	SPI2: SPI2 时钟使能 (SPI2 clock enable) 由软件置 '1'或清 '0'。 0: SPI2 时钟关闭 1: SPI2 时钟开启
13: 12	Reserved			始终读为 0
11	WWDG	rw	0x00	WWDG: 窗口看门狗时钟使能 (Window watchdog clock enable) 由软件置'1'或清'0'。 0:窗口看门狗时钟关闭 1:窗口看门狗时钟开启
10: 2	Reserved			始终读为 0
1	TIM3	rw	0x00	TIM3: 定时器 3 时钟使能 (Timer3 clock enable) 由软件置 '1' 或清 '0'。 0: 定时器 3 时钟关闭 1: 定时器 3 时钟开启
0	TIM2	rw	0x00	TIM2: 定时器 2 时钟使能 (Timer2 clock enable) 由软件置 '1' 或清 '0'。 0: 定时器 2 时钟关闭 1: 定时器 2 时钟开启

8.3.9 备份域控制寄存器器 (RCC_BDCR)

地址偏移: 0x20

复位值: 0x0000 0000, 只能由备份域复位有效复位

访问: 0~3 等待周期,字,半字和字节访问

当连续对该寄存器进行访问时,将插入等待状态。

注:备份域控制寄存器中 (RCC_BDCR) 的 LSEON、LSEBYP、RTCSEL 和 RTCEN 位处于备份域。 因此,这些位在复位后处于写保护状态,只有在电源控制寄存器 (PWR_CR) 中的 DBP 位置'1'后才能对这些位进行改动。这些位只能由备份域复位清除。任何内部或外部复位都不会影响这些位。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Re	eserved								BDRST
															rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RTCEN		F	Reserve	d		RTC	SEL		F	Reserve	d		LSEBYP	LSERDY	LSEON
rw						rw	rw	'					rw	r	rw

	F'.I.I	T	D 1	December 11 and
Bit	Field	Type	Reset	Description
31 : 17	Reserved			始终读为 0
16	BDRST	rw	0x00	BDRST: 备份域软件复位 (Backup domain software reset) 由软件置'1'或清'0'。 0: 复位未激活 1: 复位整个备份域
15	RTCEN	rw	0x00	RTCEN: RTC 时钟使能 (RTC clock enable) 由软件置'1'或清'0'。 0: RTC 时钟关闭 1: RTC 时钟开启
14: 10	Reserved			始终读为 0
9: 8	RTCSEL	rw	0x00	RTCSEL: RTC 时钟源选择 (RTC clock source selection) 由软件设置来选择 RTC 时钟源。一旦 RTC 时钟源被选定,直到下次后备域被复位,它不能在被改变。可通过设置 BDRST 位来清除。 00: 无时钟 01: LSE 振荡器作为 RTC 时钟 10: LSI 振荡器作为 RTC 时钟 11: HSE 振荡器在 128 分频后作为 RTC 时钟
7: 3	Reserved			始终读为 0

Bit	Field	Туре	Reset	Description
2	LSEBYP	rw	0x00	LSEBYP: 外部低速时钟振荡器旁路 (External low-speed
				oscillator bypass)
				在调试模式下由软件置'1'或清'0'来旁路 LSE。只有
				在外部 32KHz 振荡器关闭时,才能写入该位。
				0: LSE 时钟未被旁路
				1: LSE 时钟被旁路
1	LSERDY	r	0x00	LSERDY: 外部低速 LSE 就绪 (External low-speed oscil-
				lator ready)
				由硬件置'1'或清'0'来指示是否外部 32KHz 振荡器就
				绪。在 LSEON 被清零后,该位需要 6 个外部低速振荡器
				的周期才被清零。
				0: 外部 32KHz 振荡器未就绪
				1: 外部 32KHz 振荡器就绪
0	LSEON	rw	0x00	LSEON: 外部低速振荡器使能 (External low-speed oscilla-
				tor enable)
				由软件置'1'或清'0'
				0: 外部 32KHz 振荡器关闭
				1: 外部 32KHz 振荡器开启

8.3.10 控制状态寄存器寄存器 (RCC_CSR)

地址偏移: 0x24

复位值: 0xXC00 0000

访问: 0~3等待周期,字,半字和字节访问

当连续对该寄存器进行访问时,将插入等待状态。

除复位标志位由系统复位清除,复位标志只能由电源复位清除。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	WWDG RSTF	IWDG RSTF		POR RSTF	PIN RSTF	Res.	RMVF				Rese	erved			
	r	r	r	r	r		rw								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Rese	erved							LSIRDY	LSION
														r	rw

Bit	Field	Туре	Reset	Description
31	Reserved			始终读为 0
30	WWDGRSTF	r	0x0x	WDGRSTF: 窗口看门狗复位标志 (Window watchdog re-
				set flag)
				在窗口看门狗复位发生时由硬件置'1'。
				由软件通过写 RMVF 位清除。
				0: 无窗口看门狗复位发生
				1: 发生窗口看门狗复位

Bit	Field	Туре	Reset	Description
29	IWDGRSTF	r	0x0x	IWDGRSTF:独立看门狗复位标志 (Independent watchdog reset flag) 在独立看门狗复位发生在 VDD 区域时由硬件置'1'。由软件通过写 RMVF 位清除。 0: 无独立看门狗复位发生 1: 发生独立看门狗复位
28	SFTRSTF	r	0x0x	SFTRSTF: 软件复位标志 (Software reset flag) 在软件复位发生时由硬件置'1'。由软件通过写 RMVF 位清除。 0: 无软件复位发生 1: 发生软件复位
27	PORRSTF	r	0x01	PORRSTF: 上电/掉电复位标志 (POR/PDR reset flag) 在上电/掉电复位发生时由硬件置'1'。 由软件通过写 RMVF 位清除。 0: 无上电/掉电复位发生 1: 发生上电/掉电复位
26	PINRSTF	r	0x01	PINRSTF: NRST 管脚复位标志 (PIN reset flag) 在 NRST 管脚复位发生时由硬件置'1'。 由软件通过写 RMVF 位清除。 0: 无 NRST 管脚复位发生 1: 发生 NRST 管脚复位
25	Reserved			始终读为 0
24	RMVF	rw	0x00	RMVF: 清除复位标志 (Remove reset flag) 由软件置 '1'来清除复位标志。 0: 无作用 1: 清除复位标志
23 : 2	Reserved			始终读为 0
1	LSIRDY	r	0x00	LSIRDY: 内部低速时钟就绪 (Internal low-speed oscillator ready) 由硬件置 '1' 或清 '0' 来指示内部 40KHz 振荡器是否就绪。 在 LSION 清零后,3 个内部 40KHz 振荡器的周期后 LSIRDY 被清零。 0: 内部 40KHz 振荡器时钟未就绪 1: 内部 40KHz 振荡器时钟就绪
0	LSION	rw	0x00	LSION: 内部低速振荡器使能 (Internal low-speed oscillator enable) 由软件置'1'或清'0'。 0: 内部 40KHz 振荡器关闭 1: 内部 40KHz 振荡器开启

8.3.11 AHB 外设复位寄存器 (RCC_AHBRSTR)

地址偏移: 0x28

复位值: 0x0000 0000

访问: 0~3等待周期,字,半字和字节访问

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Re	served			HWDIV Reserved						GPIOD	GPIOC	GPIOB	GPIOA	Res.
					rw						rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Rese	erved							

Bit	Field	Туре	Reset	Description
31: 27	Reserved			始终读为 0
26	HWDIV	rw	0x00	HWDIV: HWDIV 复位 (HWDIV reset)。 由软件置'1'或清'0'。 1: 无作用 0: 复位 HWDIV
25: 21	Reserved			始终读为 0
20	GPIOD	rw	0x00	GPIOD: GPIOD 复位 (GPIOD reset) 由软件置'1'或清'0'。 0: 无作用 1: 复位 GPIOD
19	GPIOC	rw	0x00	GPIOC: GPIOC 复位 (GPIOC reset) 由软件置'1'或清'0'。 0: 无作用 1: 复位 GPIOC
18	GPIOB	rw	0x00	GPIOB: GPIOB 复位 (GPIOB reset) 由软件置'1'或清'0'。 0: 无作用 1: 复位 GPIOB
17	GPIOA	rw	0x00	GPIOA: GPIOA 复位 (GPIOA reset) 由软件置'1'或清'0'。 0: 无作用 1: 复位 GPIOA
16: 0	Reserved			始终读为 0

8.3.12 系统配置寄存器 (RCC_SYSCFG)

地址偏移: 0x40

复位值: 0x0000 1403

访问: 0~3等待周期,字,半字和字节访问

除复位标志位由系统复位清除,复位标志只能由电源复位清除。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	OSC_ LPFEN	Res.	OSC_	ITRIM	OSC_RTRIM			Reser	ved				SECTOR _1K _CFG	PROG_ CHECK _EN	
	rw		rw	rw	rw	rw	rw							rw	rw

Bit	Field	Туре	Reset	Description
31: 15	Reserved			始终读为 0
14	OSC_LPFEN	rw	0x00	OSC_LPFEN: 外接晶振低通滤波使能
				0: 禁止
				1: 使能
13	Reserved			始终读为 0
12: 11	OSC_ITRIM	rw	0x01	OSC_ITRIM: 外接晶振驱动电流校准值
				如晶振出现异常,可调节驱动电流适配晶振
				00: 2mA
				01: 4mA
				10: 6mA
				11: 8mA
10: 8	OSC_RTRIM	rw	0x04	OSC_RTRIM: 外接晶振反馈电阻校准值
				如晶振出现异常,可调节驱动电流适配晶振
				000: 100ΚΩ
				001: 200ΚΩ
				010: 500ΚΩ
				011: 700ΚΩ
				100: 1MΩ 101: 2MΩ
				110: 4MΩ
				111: 8MΩ
7: 2	Reserved			始终读为 0
1	SECTOR_1K	rw	0x01	SECTOR_1K_CFG: Flash 页擦除时擦除的大小。
1	_CFG	I VV	0.001	1: 1K 字节
	_010			0: 512 字节
0	PROG	rw	0x01	PROG CHECK EN: 写 Flash 时是否检查 Flash 内的数
	CHECK_EN		3,01	据是否是 FF。(硬件固定位 1 了)
	J J			1: 检查
				0: 不检查
				○・ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8.3.13 HSI 延迟寄存器 (RCC_HSIDLY)

地址偏移: 0x44

复位值: 0x0000 0080

访问: 0~3等待周期,字,半字和字节访问

除复位标志位由系统复位清除,复位标志只能由电源复位清除。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								Y_CNT						<u> </u>	
							ПЗІДГ	-1_CIVI							
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bit	Field	Туре	Reset	Description
31: 16	Reserved			始终读为 0
15: 0	HSIDLY_CNT	rw	0x0080	HSIDLY_CNT: HSI 延迟时间。

8.3.14 HSE 延迟寄存器 (RCC_HSEDLY)

地址偏移: 0x48

复位值: 0x0000 3E80

访问: 0~3等待周期,字,半字和字节访问

除复位标志位由系统复位清除,复位标志只能由电源复位清除。

31	30	29	28	27	26	25	24 Res	23 served	22	21	20	19	18	17	16
							Nes	serveu							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							HSED	LY_CN	Γ						
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bit	Field	Туре	Reset	Description
31: 16	Reserved			始终读为 0
15: 0	HSEDLY_CNT	rw	0x3E80	HSEDLY_CNT: HSE 延迟时间。

9

通用功能 I/O(GPIO)

通用功能 I/O(GPIO)

9.1 GPIO 功能描述

每个 GPIO 端口有两个 32 位配置寄存器 (GPIOx_CRL, GPIOx_CRH), 两个 32 位数据寄存器 (GPIOx_IDR 和 GPIOx_ODR), 一个 32 位置位/复位寄存器 (GPIOx_BSRR), 一个 16 位复位寄存器 (GPIOx_BRR)、一个 32 位锁定寄存器 (GPIOx_LCKR) 和两个复用功能选择寄存器 (GPIOx_AFRH) 和 (GPIOx_AFRL)。

GPIO 端口的每个位可以由软件分别配置成多种模式。

- 输入浮空
- 输入上拉
- 输入下拉
- 模拟输入
- 开漏输出
- 推挽式输出
- 推挽式复用功能
- 开漏复用功能

每个 I/O 端口可以自由编程, 然而必须按照 32 位字访问 I/O 端口寄存器 (不允许半字或字节访问)。

GPIOx_BSRR 和 GPIOx_BRR 寄存器允许对任何 GPIO 寄存器进行读/更改的独立访问; 这样,在读更改访问之间产生 IRQ 不会发生危险。

下图给出了一个 I/O 端口位的基本结构。

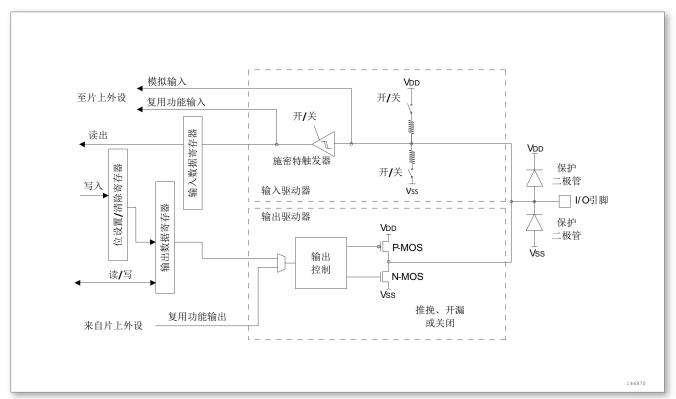


图 14. I/O 端口位的基本结构

表 20. 端口位配置表

	* *					
配	CNF1	CNF0	MODE1	MODE0	PxODR 寄存器	
通用於山	推挽 (Push-Pull)	0	0	,		0 或 1
通用输出	开漏 (Open-Drain)	0	1	0	11	0 或 1
复用功能输出	推挽 (Push-Pull)	1	0			不使用
	开漏 (Open-Drain)	ı	1			不使用
	模拟输入	0	0			不使用
输入	浮空输入	0	1		0	不使用
	下拉输入	1	0	. 00		0
	上拉输入	I	0			1

表 21. 输出模式位

MODE[1: 0]	意义
00	保留
01	输出

9.1.1 通用 I/O(GPIO)

复位期间和刚复位后,复用功能未开启,I/O 端口被配置成浮空输入模式 (CNFx[1:0] = 01,MODEx[1:0] = 00)。

复位后,SWD 引脚被置于输入上拉或下拉模式:

- PA14: SWCLK 置于下拉模式
- PA13: SWDIO 置于上拉模式

当作为输出配置时,写到输出数据寄存器上的值 (GPIOx_ODR) 输出到相应的 I/O 引脚。可以以推挽模式或者开漏模式 (当输出 0 时,只有 N-MOS 被打开)使用输出驱动器。

输入数据寄存器 (GPIOx_IDR) 在每个 AHB 时钟周期捕捉 I/O 引脚上的数据。

所有 GPIO 引脚有一个内部弱上拉和弱下拉,当配置为输入时,他们可以被激活也可以被断开。

9.1.2 单独的位设置或位清除

当 GPIOx_ODR 的个别位编程时,软件不需要禁止中断:

在单次 AHB 写操作里,可以只更改一个或多个位。

这是通过对'置位/复位寄存器'(GPIOx_BSRR, 复位是 GPIOx_BRR) 中想要更改的位写'1'来实现的,没被选择的位将不被更改。

9.1.3 外部中断/唤醒线

所有端口都有外部中断能力。为了使用外部中断线,端口必须配置成输入模式。更多的关于外部中断的信息,参考 9.3节:外部中断/事件控制器 (EXTI)。

9.1.4 复用功能

使用默认复用功能前必须对端口位配置寄存器编程。

• 对于复用的输入功能,端口必须配置成输入模式 (浮空、上拉或下拉) 且输入管脚必须由外部驱动。

注:也可以通过软件来模拟复用功能输入管脚,这种模拟可以通过对 GPIO 控制器编程来实现。此时,端口应当被设置为复用功能输出模式。显然,这时相应的管脚不再由外部驱动,而是通过 GPIO 控制器由软件来驱动。

- 对于复用输出功能,端口必须配置成复用功能输出模式(推挽或开漏)。
- 对于双向复用功能,端口位必须配置复用功能输出模式 (推挽或开漏)。这时,输入驱动器被配置成浮空输入模式。

如果把端口配置成复用输出功能,则引脚和输出寄存器断开,并和片上外设的输出信号连接。如果软件把一个 GPIO 脚配置成复用输出功能,但是外设没有被激活,它的输出将不确定。

9.1.5 软件重新映射 I/O 复用功能

为了使不同器件封装的外设 I/O 功能的数量达到最优,可以把一些复用功能重新映射到其他一些脚上。这可以通过软件配置相应的寄存器来完成 (参考 AFR 寄存器描述)。

这时, 复用功能就不再映射到它们的原始引脚上。

9.1.6 GPIO 锁定机制

锁定机制允许冻结 IO 配置。当在一个端口位上执行了锁定 (LOCK) 程序,在下次复位之前,将不能再更改端口位的配置。

9.1.7 输入配置

当 I/O 端口配置为输入时:

- 输出缓冲器被禁止
- 施密特触发输入被激活
- 根据输入配置 (上拉,下拉或浮动)的不同,弱上拉和下拉的电阻被连接
- 出现在 I/O 脚上的数据在每个 AHB 时钟被采样到输入数据寄存器
- 对输入数据寄存器的读访问可得到 I/O 状态

下图给出了 I/O 端口位的输入配置:

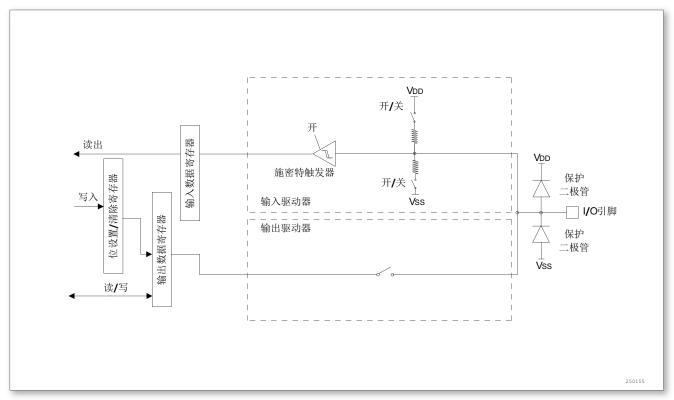


图 15. 输入浮空/上拉/下拉配置

9.1.8 输出配置

当 I/O 端口被配置为输出时:

- 输出缓冲器被激活
 - 开漏模式:输出寄存器上的'0'激活 N-MOS,而输出寄存器上的'1'将端口置于高阻状态 (P-MOS 从不被激活)
 - 推挽模式:输出寄存器上的'0'激活 N-MOS,而输出寄存器上的'1'将激活 P-MOS
- 施密特输入被激活
- 弱上拉和下拉电阻被禁止
- 出现在 I/O 脚上的数据在每个 AHB 时钟被采样到输入数据寄存器
- 在开漏模式时,对输入数据寄存器的访问可得到 I/O 状态
- 在推挽模式时,可对输出数据寄存器的读访问得到最后一次写的值。

下图给出了 I/O 端口位的输出配置:

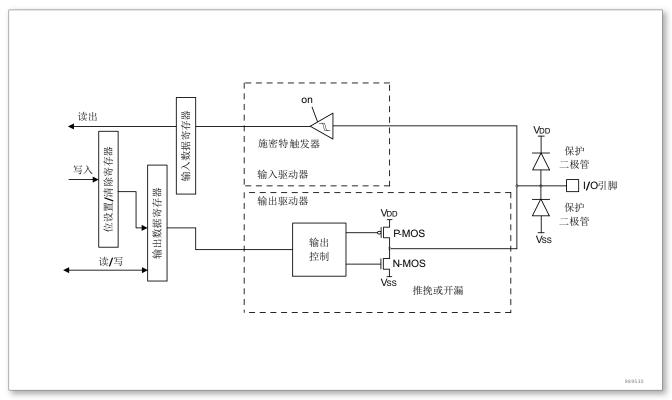


图 16. 输出配置

9.1.9 复用功能配置

当 I/O 端口被配置为复用功能时:

- 在开漏或推挽式配置中,输出缓冲器被打开
- 内置外设的信号驱动输出缓冲器 (复用功能输出)
- 施密特触发输入被激活
- 弱上拉和下拉电阻被禁止
- 在每个 AHB 时钟周期,出现在 I/O 脚上的数据被采样到输入数据寄存器
- 开漏模式时,读输入数据寄存器时可得到 I/O 口状态
- 在推挽模式时,读输出数据寄存器时可得到最后一次写的值

下图给出了 I/O 端口为复用功能的配置。详见 AFIO 寄存器描述。

一组复用功能 I/O 寄存器允许用户把一些复用功能重新映射到不同的引脚。

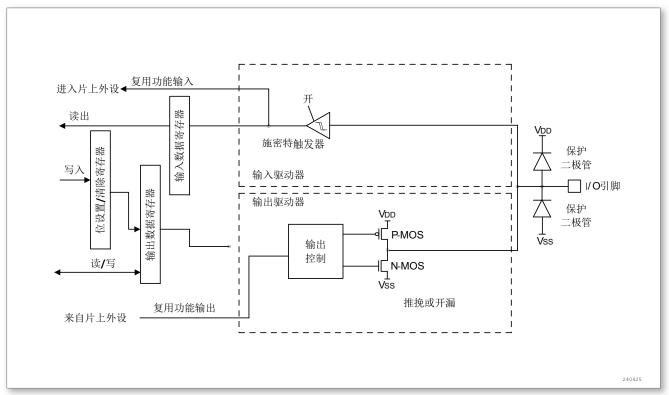


图 17. 复用功能配置

9.1.10 模拟输入配置

当 I/O 端口被配置成模拟输入配置时:

- 输出缓冲器禁止
- 禁止施密特触发输入,实现了每个模拟 I/O 引脚上的零消耗。施密特触发输出值被强制 为 '0'
- 弱上拉和下拉电阻被禁止
- 读取输入数据寄存器时数值为'0'

下图给出了 I/O 端口位的高阻抗输入配置:

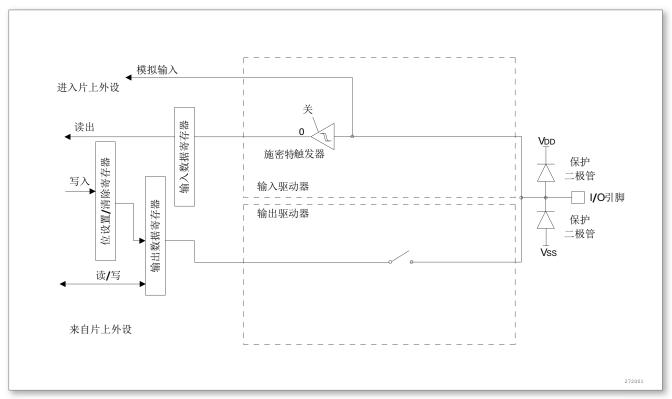


图 18. 高阻抗的模拟输入配置

9.1.11 外设的 GPIO 配置

下列表格列出了各个外设的引脚配置:

表 22. 高级定时器 TIM1

TIM1 引脚	配置	GPIO 配置		
TIMA CLIV	输入捕获通道 x	浮空输入		
TIM1_CHx	输出比较通道 x	推挽复用输出		
TIM1_CHxN	互补输出通道 x	推挽复用输出		
TIM1_BKIN	刹车输入	浮空输入		
TIM1_ETR	外部触发时钟输入	浮空输入		

表 23. 通用定时器 TIM2/3/14/16/17

TIM2/3/14/16/17 引脚	配置	GPIO 配置
TIM2/3/14/	输入捕获通道 x	浮空输入
16/17_CHx	输出比较通道 x	推挽复用输出
TIM2/3_ETR	外部触发时钟输入 x	浮空输入

表 24. UART

UART 引脚	配置	GPIO 配置
UARTx_TX	串口发送	推挽复用输出
UARTx_RX	串口接收	浮空输入或带上拉输入
UARTx_RTS	硬件流量控制	推挽复用输出
UARTx_CTS	硬件流量控制	浮空输入或带上拉输入

表 25. SPI

SPI 引脚	配置	GPIO 配置		
SDIA SCK	主模式	推挽复用输出		
SPIx_SCK	从模式	浮空输入		
CDIv MOCI	全双工模式/主模式	推挽复用输出		
SPIx_MOSI	全双工模式/从模式	浮空输入或带上拉输入		
CDIV MICO	全双工模式/主模式	浮空输入或带上拉输入		
SPIx_MISO	全双工模式/从模式	推挽复用输出		
	硬件主/从模式	浮空输入或带上拉输入或带下拉输		
SDIA NGS		入		
SPIx_NSS	硬件主模式/NSS 输出使能	推挽复用输出		
	软件模式	未用,可作为通用 I/O		

表 26. I2C

I2C 引脚	配置	GPIO 配置
I2Cx_SCL	I2C 时钟	开漏复用输出
I2Cx_SDA	I2C 数据	开漏复用输出

表 27. ADC

ADC 引脚	GPIO 配置			
ADC	模拟输入			

表 28. 其他 I/O 引脚

引脚	配置	GPIO 配置
MCO	时钟输出	推挽复用输出
EXTI 输入线	外部中断输入	浮空输入或带上拉输入或下拉输入

9.2 复用功能 I/O 和调试配置

为了优化外设数目,可以把一些复用功能重新映射到其他引脚上。设置复用功能寄存器 (AFR) 实现引脚的重新映射。这时,复用功能不再映射到它们的原始分配上。

9.2.1 把 OSC_IN/OSC_OUT 作为 GPIO 端口 PD0/PD1

外部振荡器引脚 OSC_IN/OSC_OUT 可以用作 GPIO 的 PD0/PD1, 需先关闭内部高速时钟, 再通过设置复用功能寄存器 (AFR) 实现。

注:外部中断/事件功能没有被重映射。

9.2.2 SWD 复用功能重映射

调试接口信号被映射到 GPIO 端口上,如下表所示

表 29. 调试接口信号

复用功能	GPIO 端口
SWDIO	PA13
SWCLK	PA14

为了在调试期间可以使用更多 GPIOs,通过设置复用重映射和复用功能寄存器,可以改变上述重映射配置。

9.3 GPIO 寄存器描述

表 30. GPIO 寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	GPIOx_CRL	端口配置低寄存器	0x4444444	小节 9.3.1
0x04	GPIOx_CRH	端口配置高寄存器	0x4444444	小节 9.3.2
0x08	GPIOx_IDR	端口输入数据寄存器	0x0000XXXX	小节 9.3.3
0x0C	GPIOx_ODR	端口输出数据寄存器	0x00000000	小节 9.3.4
0x10	GPIOx_BSRR	端口设置/清除寄存器	0x00000000	小节 9.3.5
0x14	GPIOx_BRR	端口位清除寄存器	0x00000000	小节 9.3.6
0x18	GPIOx_LCKR	端口配置锁定寄存器	0x00000000	小节 9.3.7
0x20	GPIOx_AFRL	端口复用功能低位寄存器	0x00000000	小节 9.3.8
0x24	GPIOx_AFRH	端口复用功能高位寄存器	0x00000000	小节 9.3.9

9.3.1 端口配置低寄存器 (GPIOx_CRL)(x = A..D)

偏移地址: 0x00

复位值: 0x4444 4444

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CI	NF7	МО	DE7	CI	CNF6		MODE6		CNF5		MODE5		CNF4		DE4
r	w	r	w	r	w	r	w	r	w	r	w	r	w	n	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CI	NF3	МС	DE3	CI	NF2	MODE2		CNF1		MODE1		CNF0		MODE	
r	W	r	w	r	W	rw		rw		rw		rw		rw	

Bit	Field	Туре	Reset	Description
31: 30	CNFy	rw	0x01	端口 x 配置位 (0···7)(Port x configuration bits)
27: 26				软件通过这些位配置相应的 I/O 端口,请参考表 20端口位
23: 22				配置表
19: 18				在输入模式 (MODE = 00):
15: 14				00: 模拟输入模式
11: 10				01: 浮空输入模式
7: 6				10: 上拉/下拉输入模式
3: 2				11: 保留
				在输出模式 (MODE > 00):
				00: 通用推挽输出模式
				01: 通用开漏输出模式
				10: 复用功能推挽输出模式
				11: 复用功能开漏输出模式
29: 28	MODEy	rw	0x00	端口 x 的模式位 (y = 0····7)(Port x mode bits)
25: 24				软件通过这些位配置相应的 I/O 端口,请参考表 20端口位
21: 20				配置表
17: 16				00: 输入模式 (复位后的状态)
13: 12				01: 输出模式
9: 8				10: 保留
5: 4				11: 保留
1: 0				

9.3.2 端口配置高寄存器 (GPIOx_CRH)(x = A..D)

偏移地址: 0x04

复位值: 0x4444 4444

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CN	F15	MOE	DE15	CN	IF14	MODE14		CNF13		MODE13		CNF12		MODE12	
r	w	ı	w	r	w	r	w	r	w	r	w	r	w	r	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CN	IF11	MOI	DE11	CN	NF10	MODE10		CN	IF9	MODE9		CNF8		MODE	
r	N	r	w	r	w	rw		rw		rw		rw		rw	

Bit	Field	Туре	Reset	Description
31: 30	CNFy	rw	0x01	端口 x 配置位 (8····15)(Port x configuration bits)
27: 26				软件通过这些位配置相应的 I/O 端口,请参考表 20端口位
23: 22				配置表
19: 18				在输入模式 (MODE = 00):
15: 14				00: 模拟输入模式
11: 10				01: 浮空输入模式
7: 6				10: 上拉/下拉输入模式
3: 2				11: 保留
				在输出模式 (MODE[1: 0] > 00):
				00: 通用推挽输出模式
				01: 通用开漏输出模式
				10: 复用功能推挽输出模式
				11: 复用功能开漏输出模式
29: 28	MODEy	rw	0x00	端口 x 的模式位 (y = 8···15)(Port x mode bits)
25: 24				软件通过这些位配置相应的 I/O 端口,请参考表 20端口位
21: 20				配置表
17: 16				00: 输入模式 (复位后的状态)
13: 12				01: 输出模式
9: 8				10: 保留
5: 4				11: 保留
1: 0				

9.3.3 端口输入数据寄存器 (GPIOx_IDR)(x = A..D)

偏移地址: 0x08

复位值: 0x0000 XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							IDF	₹							

Bit	Field	Туре	Reset	Description
31: 16	Reserved			始终读为0。
15: 0	IDRy	r	0xXXXX	端口输入数据 (y = 015)(Port input data)
				这些位为只读只能以字 (16位)的形式读出,读出的值为对
				应的 I/O 口的状态。

9.3.4 端口输出数据寄存器 (GPIOx_ODR)(x = A..D)

偏移地址: 0x0C

 有 台 估 ·	0x0000 0000	
# 11/ 1FI	UXUUUU UUUU	

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							OD	R							

rw

Bit	Field	Туре	Reset	Description
31: 16	Reserved			始终读为 0。
15: 0	ODRy	rw	0x0000	端口输出数据 (y = 015)(Port output data) 这些位为可读并只能以字 (16 位) 的形式操作。 注:对 GPIOx_BSRR(x = A···E),可以分别地对各个 ODR 位进行独立的设置/清除。

9.3.5 端口设置/清除寄存器 (GPIOx_BSRR)(x = A..D)

偏移地址: 0x10

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 BS15		13 BS13		11 BS11		9 BS9	8 BS8	7 BS7	6 BS6	5 BS5	4 BS4	3 BS3	2 BS2	1 BS1	0 BS0

Bit	Field	Туре	Reset	Description
31: 16	BRy	W	0x0000	清除端口 x 的位 y(y = 0…15)(Port x Reset bit y) 这些位只能写入并只能以字 (16 位) 的形式操作。
				0: 对对应的 ODRy 位不产生影响 1: 清除对应的 ODRy 位为 0
15: 0	BSy	W	0x0000	设置端口 x 的位 y(y = 015)(Port x Set bit y)
				这些位只能写入并只能以字 (16 位) 的形式操作。
				0: 对应的 ODRy 位不产生影响
				1: 设置对应的 ODRy 位为 1

9.3.6 端口位清除寄存器 (GPIOx_BRR)(x = A..D)

偏移地址: 0x14

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	BR														
							w								

Bit	Field	Туре	Reset	Description
31: 16	Reserved			始终读为 0
15: 0	BRy	W	0x0000	清除端口 x 的位 y(y = 0…15)(Port x Reset bit y) 这些位只能写入并只能以字 (16 位) 的形式操作。 0: 对应的 ODRy 位不产生影响 1: 清除对应的 ODRy 位为 0

9.3.7 端口配置锁定寄存器 (GPIOx_LCKR)(x = A..D)

当执行正确的写序列设置了位 16(LCKK) 时,该寄存器用来锁定端口位的配置。位 [15:0] 用于锁定 GPIO 端口的配置。在规定的写入操作期间,不能改变 LCKP[15:0]。当对响应的端口位执行了 LOCK 序列后,在下次系统复位之前将不能再更改端口位的配置。

每个锁定位锁定控制寄存器 (CRL, CRH) 中相应的 4 个位。

地址偏移: 0x18

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						ı	Reserve	ed							LCKK
															rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							LC	K							
							r	w							

Bit	Field	Туре	Reset	Description
31: 17	Reserved			始终读为 0
16	LCKK	rw	0x00	锁键 (Lock key)
				该位可随时读出,它只可通过锁键写入序列修改。
				0: 端口配置锁键位激活
				1: 端口配置锁键位被激活,下次系统复位前 GPIOx_LCKR
				寄存器被锁住
				锁键的写入序列:
				写 1-> 写 0-> 写 1-> 读 0-> 读 1
				最后一个读可省略,但可以用来确认锁键已被激活。
				注:在操作锁键的写入序列时,不能改变 LCK 的值。操作锁键写
				入序列中的任何错误将不能激活锁键。

Bit	Field	Туре	Reset	Description
15: 0	LCKy	rw	0x00	端口 x 的锁位 y(y = 0···15)(Port x Lock bit y)
				这些位可读可写但只能在 LCKK 位为 0 时写入。
				0: 不锁定端口的配置
				1: 锁定端口的配置

9.3.8 端口复用功能低位寄存器 (GPIOx_AFRL)(x = A..D)

偏移地址: 0x20

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	AFR7 AFR6					R6		AFR5					AFR4			
	rv	V			rv	/			rv	V			rw	/		
15	14	13	12	11	10	9	8	7	6	5	4	3 2 1 0			0	
	AFR3 AFR2					AFR1				AFR0						
	rw			rw				rw				rw				

Bit	Field	Туре	Reset	Description
31: 0	AFRy	rw	0x0000	端口 x 的位 y(y = 0…7) 的复用功能选择
			0000	这些位能软件写入配置 IO 复用功能。
				0000: AF0
				0001: AF1
				0010: AF2
				0011: AF3
				0100: AF4
				0101: AF5
				0110: AF6
				0111: AF7

9.3.9 端口复用功能高位寄存器 (GPIOx_AFRH)(x = A..D)

偏移地址: 0x24

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
AFR15					AFI	R14		AFR13				AFR12			
	rw				rw				n	W		rw			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	AFR11				AFF	R10		AFR9				AFR8			
	rw			rw				rw				rw			

Bit	Field	Туре	Reset	Description
31: 0	AFRy	rw	0x0000	端口 x 的位 y(y = 8…15) 的复用功能选择
			0000	这些位能软件写入配置 IO 复用功能。
				0000: AF0
				0001: AF1
				0010: AF2
				0011: AF3
				0100: AF4
				0101: AF5
				0110: AF6
				0111: AF7

10

中断和事件 (EXTI)

中断和事件 (EXTI)

10.1 嵌套向量中断控制器

特征

- 中断都可屏蔽 (除了 NMI)
- 16 个可编程的优先等级 (使用了 4 位中断优先级)
- 低延迟的异常和中断处理
- 电源管理控制
- 系统控制寄存器的实现

嵌套向量中断控制器 (NVIC) 和处理器核的接口紧密相连,可以实现低延迟的中断处理和高效地处理晚到的中断。

嵌套向量中断控制器管理着包括核异常等中断。关于更多的异常和 NVIC 编程的说明请参考 CPU 技术参考手册。

10.1.1 系统嘀嗒 (SysTick) 校准值寄存器

系统嘀嗒校准值固定为 9000, 当系统嘀嗒时钟设定为 9MHz(HCLK/8, HCLK = 72MHz), 产生 1ms 时间基准。

10.1.2 中断和异常向量

下表列出了本系列产品的向量表。

表 31. 本系列产品的向量表

位置	优先级	优先级类型	名称	说明	地址
	-	-	-	保留	0x0000_0000
	-3	固定	Reset	复位	0x0000_0004
				不可屏蔽中断	
	-2	固定	NMI	RCC 时钟安全系统 (CSS) 联接	0x0000_0008
				到 NMI 向量	
	-1	固定	硬件失效 (HardFault)	所有类型的失效	0x0000_000C
	0	可设置	存储管理 (MemManage)	存储器管理	0x0000_0010
	1	可设置	总线错误 (BusFault)	预取指失败,存储器访问失败	0x0000_0014
	2	可设置	错误应用 (UsageFault)	未定义的指令或非法状态	0x0000_0018
					0x0000_001C
	-	-	-	保留	~
					0x0000_002B

位置	优先级	优先级类型	名称	说明	地址
	3	可设置	SVCall	通过 SWI 指令的系统服务调用	0x0000_002C
	4	可设置	调试监控 (DebugMonitor)	调试监控器	0x0000_0030
	-	-	-	保留	0x0000_0034
	5	可设置	PendSV	可挂起的系统服务	0x0000_0038
	6	可设置	SysTick	系统嘀嗒定时器	0x0000_003C
0	7	可设置	WWDG/IWDG	窗口/独立看门狗定时器中断	0x0000_0040
1	8	可设置	PVD	连到 EXTI16 的电源电压检测 (PVD) 中断	0x0000_0044
2	9	可设置	PWMCTRL	换相和输入错误中断	0x0000_0048
3	10	可设置	Flash	闪存全局中断	0x0000_004C
4	11	可设置	RCC_CRS	RCC 和 CRS 全局中断	0x0000_0050
5	12	可设置	EXTIO_1	EXTI 线 [1: 0] 中断	0x0000_0054
6	13	可设置	EXTI2_3	EXTI 线 [3: 2] 中断	0x0000_0058
7	14	可设置	EXTI4_15	EXTI 线 [15: 4] 中断	0x0000_005C
8	15	可设置	HWDIV	HWDIV 全局中断	0x0000_0060
9	16	可设置	DMA1 通道 1	DMA1 通道 1 全局中断	0x0000_0064
10	17	可设置	DMA1 通道 2、3	DMA1 通道 2、3 全局中断	0x0000_0068
11	18	可设置	DMA1 通道 4、5	DMA1 通道 4、5 全局中断	0x0000_006C
12	19	可设置	ADC1	ADC1 全局中断	0x0000_0070
13	20	可设置	TIM1_BRK_UP_TRG_COM	TIM1 刹车、更新、触发、COM 中断	0x0000_0074
14	21	可设置	TIM1_CC	TIM1 捕捉比较中断	0x0000_0078
15	22	可设置	TIM2	TIM2 全局中断	0x0000_007C
16	23	可设置	TIM3	TIM3 全局中断	0x0000_0080
17	24	可设置	TIM8_BRK_UP_TRG_COM	TIM8 刹车、更新、触发、COM 中断	0x0000_0084
18	25	可设置	TIM8_CC	TIM8 捕捉比较中断	0x0000_0088
19	26	可设置	TIM14	TIM14 全局中断	0x0000_008C
20	27	可设置	ADC2	ADC2 全局中断	0x0000_0090
21	28	可设置	TIM16	TIM16 全局中断	0x0000_0094
22	29	可设置	TIM17	TIM17 全局中断	0x0000_0098
23	30	可设置	I2C1	I2C1 全局中断	0x0000_009C
24	31	可设置	COMP1/2/3/4/5	比较器全局中断 (与 EXTI 19 23 组合在一起)	0x0000_00A0
25	32	可设置	SPI1	SPI1 全局中断	0x0000_00A4
26	33	可设置	SPI2	SPI2 全局中断	0x0000_00A8
27	34	可设置	UART1	UART1 全局中断	0x0000_00AC
28	35	可设置	UART2	UART2 全局中断	0x0000_00B0
29	36	可设置	FlashCache	FlashCache 全局中断	0x0000_00B4
30	37	-	-	保留	0x0000_00B8

位置	优先级	优先级类型	名称	说明	地址
31	38	-	-	保留	0x0000_00BC

10.2 外部中断/事件控制器 (EXTI)

外部中断和事件控制器 (EXTI) 管理外部和内部异步事件/中断,并生成相应的事件请求到 CPU/中断控制器和到电源管理的唤醒请求。

能产生事件/中断请求的边沿检测器。每个输入线可以独立地配置输入类型 (脉冲或挂起) 和对应的触发事件 (上升沿或下降沿或者双边沿都触发)。每个输入线都可以独立地被屏蔽。挂起寄存器保持着状态线的中断请求。

10.2.1 主要特征

EXTI 控制器的主要特性如下:

- 每个中断/事件都有独立的触发和屏蔽
- 每个中断线都有专用的状态位
- 支持软件的中断/事件请求
- 检测脉冲宽度低于 APB2 时钟宽度的外部信号。参见数据手册中电气特性部分的相关参数。

10.2.2 框图

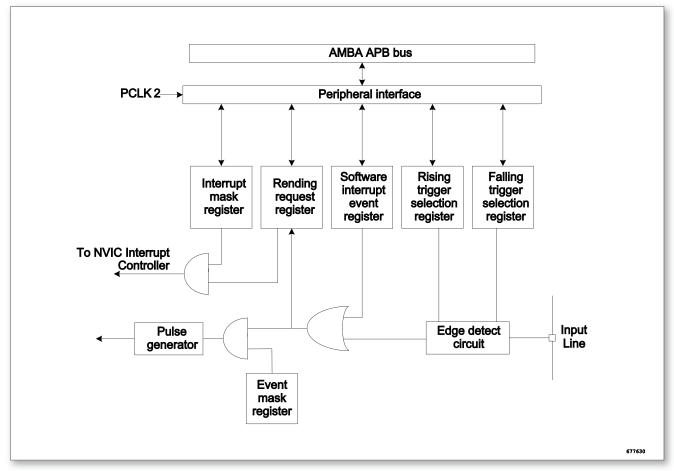


图 19. 外部中断/事件控制器框图

10.2.3 唤醒事件管理

可以处理外部或内部事件来唤醒内核 (WFE)。唤醒事件可以通过下述配置产生:

- 在外设的控制寄存器使能一个中断,但不在 NVIC 中使能,同时在 CPU 的系统控制寄存器中使能 SEVONPEND 位。
 - 当 CPU 从 WFE 恢复后,需要清除相应外设的中断挂起位和外设 NVIC 中断通道挂起位 (在 NVIC 中断清除挂起寄存器中)。
- 配置一个外部或内部 EXTI 线为事件模式,当 CPU 从 WFE 恢复后,因为对应事件线的 挂起位没有被置位,不必清除相应外设的中断挂起位或 NVIC 中断通道挂起位。

使用外部 I/O 端口作为唤醒事件,请参见下节的功能说明。

10.2.4 功能说明

要产生中断,必须先配置好并使能中断线。根据需要的边沿检测设置 2 个触发寄存器,同时在中断屏蔽寄存器的相应位写'1'允许中断请求。当外部中断线上发生了期待的边沿时,将产生一个中断请求,对应的挂起位也随之被置'1'。在挂起寄存器的对应位写'1',将清除该中断请求。

如果需要产生事件,必须先配置好并使能事件线。根据需要的边沿检测通过设置 2 个触发寄存器,同时在事件屏蔽寄存器的相应位写'1'允许事件请求。当事件线上发生了需要的

边沿时,将产生一个事件请求脉冲,对应的挂起位不被置'1'。

通过在软件中断/事件寄存器写'1',也可以通过软件产生中断/事件请求。

硬件中断选择

通过下面的过程来配置多个线路做为中断源:

- 配置中断线的屏蔽位 (EXTI_IMR)
- 配置所选中断线的触发选择位 (EXTI RTSR 和 EXTI FTSR)
- 配置对应到外部中断控制器 (EXTI) 的 NVIC 中断通道的使能和屏蔽位,使得中断线中的 请求可以被正确地响应

硬件事件选择

通过下面的过程,可以配置多个线路为事件源:

- 配置事件线的屏蔽位 (EXTI_EMR)
- 配置事件线的触发选择位 (EXTI_RTSR 和 EXTI_FTSR)

软件中断/事件的选择

多个线路可以被配置成软件中断/事件线。下面是产生软件中断的过程:

- 配置中断/事件线屏蔽位 (EXTI IMR, EXTI EMR)
- 设置软件中断寄存器的请求位 (EXTI_SWIER)

10.2.5 外部中断/事件线路映像

通用 I/O 端口以下图的方式连接到 16 个外部中断/事件线上:

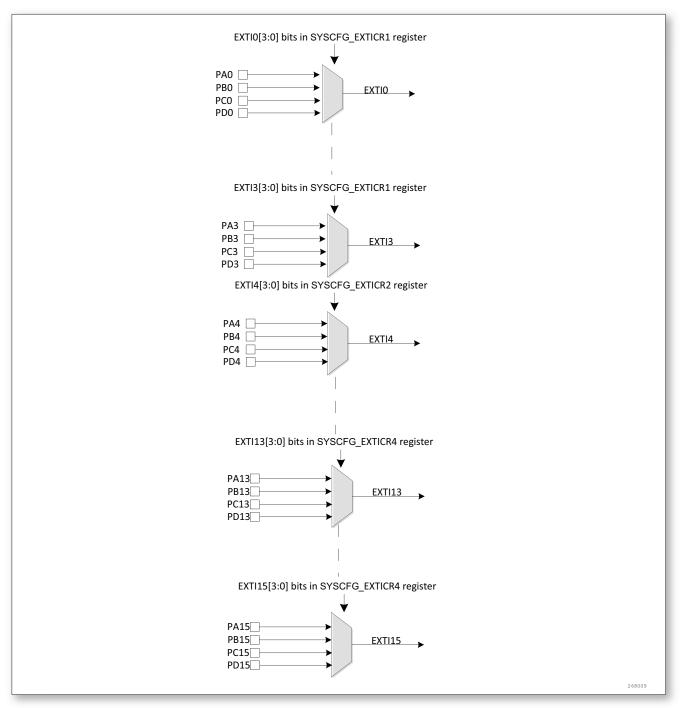


图 20. 外部中断通用 I/O 映像

注:上图对应的 GPIO 可能因实际芯片封装出现差异,以实际芯片为准。

另外其他的外部中断/事件控制器的连接如下:

- EXTI 线 16 连接到 PVD 输出
- EXTI 线 19 连接到比较器 4 输出
- EXTI 线 20 连接到比较器 5 输出
- EXTI 线 21 连接到比较器 1 输出
- EXTI 线 22 连接到比较器 2 输出
- EXTI 线 23 连接到比较器 3 输出

• EXTI 线 24 连接到 IWDG 中断

10.3 EXTI 寄存器描述

表 32. EXTI 寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	EXTI_IMR	中断屏蔽寄存器	0x00000000	小节 10.3.1
0x04	EXTI_EMR	事件屏蔽寄存器	0x00000000	小节 10.3.2
0x08	EXTI_RTSR	上升沿触发选择寄存器	0x00000000	小节 10.3.3
0x0C	EXTI_FTSR	下降沿触发选择寄存	0x00000000	小节 10.3.4
0x10	EXTI_SWIER	软件中断事件寄存器	0x00000000	小节 10.3.5
0x14	EXTI_PR	软件中断事件寄存	0x00000000	小节 10.3.6

10.3.1 中断屏蔽寄存器 (EXTI_IMR)

偏移地址: 0x00

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		F	Reserve	d			IMR24	IMR23	IMR22	IMR21	IMR20	IMR19	Rese	rved	IMR16
							rw	rw	rw	rw	rw	rw			rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IMR15	IMR14	IMR13	IMR12	IMR11	IMR10	IMR9	IMR8	IMR7	IMR6	IMR5	IMR4	IMR3	IMR2	IMR1	IMR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31 : 25	Reserved			始终读为0。
24 : 19	IMRx	rw	0x00	线 x 上的中断屏蔽 (Interrupt Mask on line x) 1 = 开放来自线 x 上的中断请求 0 = 屏蔽来自线 x 上的中断请求
18 : 17	Reserved			始终读为 0。
16:0	IMRx	rw	0x00	线 x 上的中断屏蔽 (Interrupt Mask on line x) 1 = 开放来自线 x 上的中断请求 0 = 屏蔽来自线 x 上的中断请求

10.3.2 事件屏蔽寄存器 (EXTI_EMR)

偏移地址: 0x04

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		R	eserved	i			EMR24	EMR23	EMR22	EMR21	EMR20	EMR19	Rese	rved	EMR16
							rw	rw	rw	rw	rw	rw			rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EMR15	EMR14	EMR13	EMR12	EMR11	EMR10	EMR9	EMR8	EMR7	EMR6	EMR5	EMR4	EMR3	EMR2	EMR1	EMR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31 : 25	Reserved			始终读为 0。
24 : 19	EMRx	rw	0x00	线 x 上的事件屏蔽 (Event Mask on line x)
				1 = 开放来自线 x 上的事件请求
				0 = 屏蔽来自线 x 上的事件请求
18 : 17	Reserved			始终读为 0。
16:0	EMRx	rw	0x00	线 x 上的事件屏蔽 (Event Mask on line x)
				1 = 开放来自线 x 上的事件请求
				0 = 屏蔽来自线 x 上的事件请求

10.3.3 上升沿触发选择寄存器 (EXTI_RTSR)

偏移地址: 0x08

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		F	Reserve	d			TR24	TR23	TR22	TR21	TR20	TR19	Res	erved	TR16
							rw	rw	rw	rw	rw	rw	1		rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TR15	TR14	TR13	TR12	TR11	TR10	TR9	TR8	TR7	TR6	TR5	TR4	TR3	TR2	TR1	TR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31 : 25	Reserved			始终读为0。
24 : 19	TRx	rw	0x00	线 x 上的上升沿触发事件配置位 (Rising trigger event con-
				figuration bit of line x)
				1 = 允许输入线 x 上的上升沿触发 (中断和事件)
				0 = 禁止输入线 x 上的上升沿触发 (中断和事件)
18 : 17	Reserved			始终读为0。
16:0	TRx	rw	0x00	线 x 上的上升沿触发事件配置位 (Rising trigger event con-
				figuration bit of line x)
				1 = 允许输入线 x 上的上升沿触发 (中断和事件)
				0 = 禁止输入线 x 上的上升沿触发 (中断和事件)

10.3.4 下降沿触发选择寄存器 (EXTI_FTSR)

偏移地址: 0x0C

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		F	Reserve	d			TR24	TR23	TR22	TR21	TR20	TR19	Res	erved	TR16
							rw	rw	rw	rw	rw	rw			rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TR15	TR14	TR13	TR12	TR11	TR10	TR9	TR8	TR7	TR6	TR5	TR4	TR3	TR2	TR1	TR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31 : 25	Reserved			始终读为 0。
24 : 19	TRx	rw	0x00	线 x 上的下降沿触发事件配置位 (Falling trigger event con-
				figuration bit of line x)
				1 = 允许输入线 x 上的下降沿触发 (中断和事件)
				0 = 禁止输入线 x 上的下降沿触发 (中断和事件)
18 : 17	Reserved			始终读为 0。
16:0	TRx	rw	0x00	线 x 上的下降沿触发事件配置位 (Falling trigger event con-
				figuration bit of line x)
				1 = 允许输入线 x 上的下降沿触发 (中断和事件)
				0 = 禁止输入线 x 上的下降沿触发 (中断和事件)

10.3.5 软件中断事件寄存器 (EXTI_SWIER)

偏移地址: 0x10

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		F	Reserve	d			SWIER24	SWIER23	SWIER22	SWIER21	SWIER20	SWIER19	Res	erved	SWIER16
							rw	rw	rw	rw	rw	rw	I		rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SWIER15	SWIER14	SWIER13	SWIER12	SWIER11	SWIER10	SWIER9	SWIER8	SWIER7	SWIER6	SWIER5	SWIER4	SWIER3	SWIER2	SWIER1	SWIER0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Type	Reset	Description
31 : 25	Reserved			始终读为0。
24 : 19	SWIERx	rw	0x00	线 x 上的软件中断 (Software interrupt on line x) 当该位为 '0'时,写'1'将设置 EXTI_PR 中相应的挂起 位。如果在 EXTI_INTMASK 和 EXTI_EVNTMASK 中允许 产生该中断,则此时将产生一个中断。 注:通过清除 EXTI_PEND 的对应位(写入'1'),可以清除该位 为'0'。

Bit	Field	Туре	Reset	Description
18 : 17	Reserved			始终读为 0。
16 : 0	SWIERx	rw	0x00	线 x 上的软件中断 (Software interrupt on line x)
				当该位为'0'时,写'1'将设置 EXTI_PR 中相应的挂起
				位。如果在 EXTI_INTMASK 和 EXTI_EVNTMASK 中允许
				产生该中断,则此时将产生一个中断。
				注:通过清除 EXTI_PEND 的对应位 (写入'1'),可以清除该位
				为'0'。

10.3.6 软件中断事件寄存器 (EXTI_PR)

偏移地址: 0x14

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved							PR24	PR23	PR22	PR21	PR20	PR19	Res	erved	PR16
							rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1			rc_w1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PR15	PR14	PR13	PR12	PR11	PR10	PR9	PR8	PR7	PR6	PR5	PR4	PR3	PR2	PR1	PR0
rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1

Bit	Field	Туре	Reset	Description
31 : 25	Reserved			始终读为0。
24 : 19	PRx	rc_w1	0x00	挂起位 (Pending bit) 1 = 发生了选择的触发请求 0 = 没有发生触发请求 当在外部中断线上发生了选择的边沿事件,该位被置'1'。 在该位中写入'1'可以清除它,也可以通过改变边沿检测的极性清除。
18 : 17	Reserved			始终读为0。
16:0	PRx	rc_w1	0x00	挂起位 (Pending bit) 1 = 发生了选择的触发请求 0 = 没有发生触发请求 当在外部中断线上发生了选择的边沿事件,该位被置'1'。 在该位中写入'1'可以清除它,也可以通过改变边沿检测的极性清除。

1 1 DMA 控制器 (DMA)

DMA 控制器 (DMA)

11.1 DMA 简介

直接存储器存取用来提供在外设和存储器之间或者存储器和存储器之间的高速数据传输。 无须 CPU 任何干预,通过 DMA 数据可以快速地移动。这就节省了 CPU 的资源来做其他 操作。

DMA 控制器有 5 个通道,每个通道专门管理多个外设请求。

11.2 DMA 主要特征

- 5 个独立的可配置的通道。
- 每个通道都直接连接专用的硬件 DMA 请求,每个通道都同样支持软件触发。这些功能 通过软件来配置。
- 在 5 个请求间的优先权可以通过软件编程设置 (共有四级:很高、高、中等和低),假如在相等优先权时由硬件决定 (请求 0 优先于请求 1,依此类推)。
- 独立的源和目标数据区的传输宽度 (字节、半字、全字),模拟打包和拆包的过程。源和目标地址必须按数据传输宽度对齐。
- 支持循环的缓冲器管理。
- 每个通道都有 3 个事件标志 (DMA 半传输, DMA 传输完成和 DMA 传输出错), 这 3 个事件标志逻辑或成为一个单独的中断请求。
- 存储器和存储器间的传输。
- 外设和存储器,存储器和外设的传输。
- SRAM、外设的 SRAM、APB1、APB2 和 AHB 外设均可作为访问的源和目标。
- 可编程的数据传输数目: 最大为 65536。

下面为功能框图:

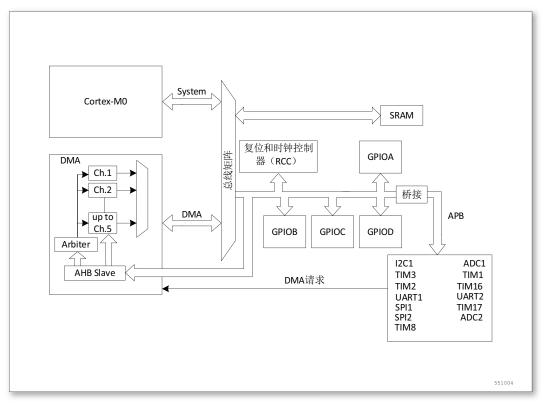


图 21. DMA 框图

11.3 功能描述

DMA 控制器和 CPU 核共享系统数据总线执行直接存储器数据传输。当 CPU 和 DMA 同时访问相同的目标 (RAM 或外设) 时,DMA 请求可能会停止 CPU 访问系统总线达若干个周期,总线仲裁器执行循环调度,以保证 CPU 至少可以得到一半的系统总线 (存储器或外设) 带宽。

11.3.1 DMA 处理

在发生一个事件后,外设发送一个请求信号到 DMA 控制器。DMA 控制器根据通道的优先权处理请求。当 DMA 控制器开始访问外设的时候,DMA 控制器立即发送给外设一个应答信号。当从 DMA 控制器得到应答信号时,外设立即释放它的请求。当外设释放了这个请求,DMA 控制器同时撤销应答信号。如果发生更多的请求时,外设可以启动下次处理。

总之,每个 DMA 传送由 3 个操作组成:

- 1. 从外设数据寄存器或者从 DMA CMARx 寄存器指定地址的存储器单元执行加载操作。
- 2. 存数据到外设数据寄存器或者存数据到 DMA CMARx 寄存器指定地址的存储器单元。
- 3. 执行一次 DMA_CNDTRx 寄存器的递减操作。该寄存器包含未完成的操作数目。

11.3.2 仲裁器

仲裁器根据通道请求的优先级来启动外设/存储器的访问。优先权管理分2个阶段:

- 软件: 每个通道的优先权可以在 DMA_CCRx 寄存器中设置,有 4 个等级:
 - 最高优先级
 - 高优先级

- 中等优先级
- 低优先级
- 硬件:如果 2 个请求有相同的软件优先级,则拥有较低编号的通道比拥有较高编号的通道有较高的优先权。举个例子,通道 2 优先于通道 4。

11.3.3 DMA 诵道

每个通道都可以在有固定地址的外设寄存器和存储器地址之间执行 DMA 传输。DMA 传输的数据量是可编程的,最大达到 65536。包含要传输的数据项数量的寄存器,在每次传输后递减。

可编程数据量

外设和存储器的传输数据量可以通过 DMA_CCRx 寄存器中的 PSIZE 和 MSIZE 位编程。

指针增量

通过设置 DMA_CCRx 寄存器中 PINC 和 MINC 标志位,外设和存储器的指针在每次传输后可以有选择地完成自动增量。当设置为增量模式时,下一个要传输的地址将是前一个地址加上增量值,增量值取决与所选的数据宽度为 1、2 或 4。第一个传输的地址存放在 DMA_CPARx / DMA_CMARx 寄存器中。通道配置为非循环模式时,传输结束后 (即传输计数变为 0) 将不再产生 DMA 操作。

通道配置

下面是配置 DMA 通道 x 的过程 (x 代表通道号):

- 1. 在 DMA_CPARx 寄存器中设置外设寄存器的地址。发生外设数据传输请求时,这个地址将是数据传输的源或目标。
- 2. 在 DMA_CMARx 寄存器中设置数据存储器的地址。发生外设数据传输请求时,传输的数据将从这个地址读出或写入这个地址。
- 3. 在 DMA CNDTRx 寄存器中设置要传输的数据量。在每个数据传输后,这个数值递减。
- 4. 在 DMA CCRx 寄存器的 PL[1:0] 位中设置通道的优先级。
- 5. 在 DMA_CCRx 寄存器中设置数据传输的方向、循环模式、外设和存储器的增量模式、 外设和存储器的数据宽度、传输一半产生中断或传输完成产生中断。
- 6. 设置 DMA_CCRx 寄存器的 ENABLE 位,启动该通道。当启动了 DMA 通道,它即可响应到该通道上的外设的 DMA 请求。

当传输一半的数据后,半传输标志 (HTIF) 被置 1,当设置了允许半传输中断位 (HTIE) 时,将产生一个中断请求。在数据传输结束后,传输完成标志 (TCIF) 被置 1,当设置了允许传输完成中断位 (TCIE) 时,将产生一个中断请求。

循环模式

循环模式用于处理循环缓冲区和连续的数据传输 (如 ADC 的扫描模式)。在 DMA_CCRx 寄存器中的 CIRC 位用于开启这一功能。当启动了循环模式,数据传输的数目变为 0 时,将会自动地被恢复成配置通道时设置的初值,DMA 操作将会继续进行。

存储器到存储器模式

DMA 通道的操作可以在没有外设请求的情况下进行,这种操作就是存储器到存储器模式。 当设置了 DMA_CCRx 寄存器中的 MEM2MEM 位之后,在软件设置了 DMA_CCRx 寄存 器中的 EN 位启动 DMA 通道时,DMA 传输将马上开始。当 DMA_CNDTRx 寄存器变为 0 时,DMA 传输结束。存储器到存储器模式不能与循环模式同时使用。

11.3.4 可编程的数据传输宽度,对齐方式和数据大小端

当 PSIZE 和 MSIZE 不相同时,DMA 模块按照下表进行数据对齐。

表 33. 可编程的数据传输宽度和大小端操作 (当 PINC = MINC = 1)

源端	目标	传输	海(中中一)新山	生松晶	日長(地長(粉埕)
宽度	宽度	数目	源 (地址 / 数据)	传输操作	目标 (地址 / 数据)
8	8	4	0x0/B0	1: 在 0x0 读 B0[7: 0],在 0x0 写 B0[7: 0]	0x0/B0
			0x1/B1	2: 在 0x1 读 B1[7: 0],在 0x1 写 B1[7: 0]	0x1/B1
			0x2/B2	3: 在 0x2 读 B2[7: 0],在 0x2 写 B2[7: 0]	0x2/B2
			0x3/B3	4: 在 0x3 读 B3[7: 0],在 0x3 写 B3[7: 0]	0x3/B3
8	16	4	0x0/B0	1: 在 0x0 读 B0[7: 0],在 0x0 写 00B0[15: 0]	0x0/00B0
			0x1/B1	2: 在 0x1 读 B1[7: 0],在 0x2 写 00B1[15: 0]	0x2/00B1
			0x2/B2	3: 在 0x2 读 B2[7: 0],在 0x4 写 00B2[15: 0]	0x4/00B2
			0x3/B3	4: 在 0x3 读 B3[7: 0],在 0x6 写 00B3[15: 0]	0x6/00B3
8	32	4	0x0/B0	1: 在 0x0 读 B0[7: 0],在 0x0 写 000000B0[31: 0]	0x0/000000B0
			0x1/B1	2: 在 0x1 读 B1[7: 0],在 0x4 写 000000B1[31: 0]	0x4/000000B1
			0x2/B2	3: 在 0x2 读 B2[7: 0],在 0x8 写 000000B2[31: 0]	0x8/000000B2
			0x3/B3	4: 在 0x3 读 B3[7: 0],在 0xC 写 000000B3[31: 0]	0xC/000000B3
16	8	4	0x0/B1B0	1: 在 0x0 读 B1B0[15: 0],在 0x0 写 B0[7: 0]	0x0/B0
			0x2/B3B2	2: 在 0x2 读 B3B2[15: 0],在 0x1 写 B2[7: 0]	0x1/B2
			0x4/B5B4	3: 在 0x4 读 B5B4[15: 0],在 0x2 写 B4[7: 0]	0x2/B4
			0x6/B7B6	4: 在 0x6 读 B7B6[15: 0],在 0x3 写 B6[7: 0]	0x3/B6
16	16	4	0x0/B1B0	1: 在 0x0 读 B1B0[15: 0],在 0x0 写 B1B0[15: 0]	0x0/B1B0
			0x2/B3B2	2: 在 0x2 读 B3B2[15: 0],在 0x2 写 B3B2[15: 0]	0x2/B3B2
			0x4/B5B4	3: 在 0x4 读 B5B4[15: 0],在 0x4 写 B5B4[15: 0]	0x4/B5B4
			0x6/B7B6	4: 在 0x6 读 B7B6[15: 0],在 0x6 写 B7B6[15: 0]	0x6/B7B6
16	32	4	0x0/B1B0	1: 在 0x0 读 B1B0[15:0],在 0x0 写 0000B1B0[31:0]	0x0/0000B1B0
			0x2/B3B2	2: 在 0x2 读 B3B2[15:0],在 0x4 写 0000B3B2[31:0]	0x4/0000B3B2
			0x4/B5B4	3: 在 0x4 读 B5B4[15:0],在 0x8 写 0000B5B4[31:0]	0x8/0000B5B4
			0x6/B7B6	4: 在 0x6 读 B7B6[15:0],在 0xC 写 0000B7B6[31:0]	0xC/0000B7B6
32	8	4	0x0/B3B2B1B0	1: 在 0x0 读 B3B2B1B0[31:0],在 0x0 写 B0[7:0]	0x0/B0
			0x4/B7B6B5B4	2: 在 0x4 读 B7B6B5B4[31:0],在 0x1 写 B4[7:0]	0x1/B4
			0x8/BBBAB9B8	3: 在 0x8 读 BBBAB9B8[31:0],在 0x2 写 B8[7:0]	0x2/B8
			0xC/BFBEBDBC	4: 在 0xC 读 BFBEBDBC[31:0],在 0x3 写 BC[7:0]	0x3/BC
32	16	4	0x0/B3B2B1B0	1: 在 0x0 读 B3B2B1B0[31:0],在 0x0 写 B1B0[15:0]	0x0/B1B0
			0x4/B7B6B5B4	2: 在 0x4 读 B7B6B5B4[31:0],在 0x2 写 B5B4[15:0]	0x2/B5B4
			0x8/BBBAB9B8	3: 在 0x8 读 BBBAB9B8[31:0],在 0x4 写 B9B8[15:0]	0x4/B9B8
			0xC/BFBEBDBC	4: 在 0xC 读 BFBEBDBC[31:0], 在 0x6 写 BDBC[15:0]	0x6/BDBC

源端 宽度	目标	传输 数目	源 (地址 / 数据)	传输操作	目标 (地址 / 数据)
32	32	4	0x0/B3B2B1B0	1: 在 0x0 读 B3B2B1B0[31:0],在 0x0 写 B3B2B1-	0x0/B3B2B1B0
			0x4/B7B6B5B4	B0[31:0]	0x4/B7B6B5B4
			0x8/BBBAB9B8	2: 在 0x4 读 B7B6B5B4[31:0],在 0x4 写 B7B6B5-	0x8/BBBAB9B8
			0xC/BFBEBDBC	B4[31:0]	0xC/BFBEBDBC
				3: 在 0x8 读 BBBAB9B8[31:0],在 0x8 写 BBBAB9-	
				B8[31:0]	
				4: 在 0xC 读 BFBEBDBC[31:0], 在 0xC 写 BFBEBD-	
				BC[31:0]	

操作一个不支持字节或半字写的 AHB 设备

当 DMA 模块开始一个 AHB 的字节或半字写操作时,数据将在 HWDATA[31:0] 总线中未使用的部分重复。因此,如果 DMA 以字节或半字写入不支持字节或半字写操作的 AHB 设备时 (即 HSIZE 不适于该模块),不会发生错误,DMA 将按照下面两个例子写入 32 位 HWDATA 数据:

- 当 HSIZE 为半字时,写入半字'0xABCD', DMA 将设置 HWDATA 总线为'0xABCDABCD'。
- 当 HSIZE 为字节时,写入字节'0xAB',DMA 将设置 HWDATA 总线为'0xABABABAB'。

假定 AHB/APB 桥是一个 AHB 的 32 位从设备,它不处理 HSIZE 参数,它将按照下述方式把任何 AHB 上的字节或半字按 32 位传送到 APB 上:

- 一个 AHB 上对地址 0x0(或 0x1、0x2 或 0x3) 的写字节数据 '0xB0' 操作,将转换到 APB 上对地址 0x0 的写字数据 '0xB0B0B0B0' 操作。
- 一个 AHB 上对地址 0x0(或 0x2) 的写半字数据 '0xB1B0' 操作,将转换到 APB 上对地址 0x0 的写字数据 '0xB1B0B1B0' 操作。

例如,如果要写入 APB 后备寄存器 (与 32 位地址对齐的 16 位寄存器),需要配置存储器数据源宽度 (MSIZE)为'16 位',外设目标数据宽度 (PSIZE)为'32 位'。

11.3.5 错误管理

读写一个保留的地址区域,将会产生 DMA 传输错误。当在 DMA 读写操作时发生 DMA 传输错误时,硬件会自动地清除发生错误的通道所对应的通道配置寄存器 (DMA_CCRx) 的 EN 位,该通道操作被停止。此时,在 DMA_IFT 寄存器中对应该通道的传输错误中断标志位 (TEIF)将被置位,如果在 DMA_CCRx 寄存器中设置了传输错误中断允许位,则将产生中断。

11.3.6 中断

每个 DMA 通道都可以在 DMA 传输过半、传输完成和传输错误时产生中断。为应用的灵活性考虑,通过设置寄存器的不同位来打开这些中断。

表 34. DMA 中断请求

中断事件	事件标志位	使能控制位		
传输过半	HTIF	HTIE		
传输完成	TCIF	TCIE		
传输错误	TEIF	TEIE		

11.3.7 DMA 请求映像

DMA 控制器

从外设 TIMx、ADCx、SPIx、I2C1 和 UARTx 产生的 5 个请求,通过逻辑或输入到 DMA 控制器,这意味着同时只能有一个请求有效。参见下图的 DMA 请求映像。

外设的 DMA 请求,可以通过设置相应外设寄存器中的控制位,被独立地开启或关闭。

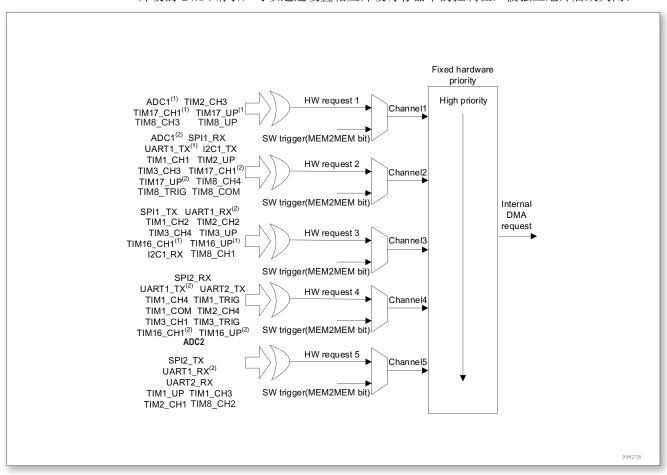


图 22. 外设 DMA 请求映射

表 35. 各个通道的 DMA 请求一览

外设	通道 1	通道 2	通道 3	通道 4	通道 5
ADC	ADC1 ⁽¹⁾	ADC1 ⁽²⁾		ADC2	
SPI		SPI1_RX	SPI1_TX	SPI2_RX	SPI2_TX
UART		UART1 TX ⁽¹⁾	UART1 RX ⁽²⁾	UART1_TX ⁽²⁾	UART1_RX ⁽²⁾
UART		UARTI_TX**	UARTI_RX	UART2_TX	UART2_RX
I2C		I2C1_TX	I2C1_RX		

外设	通道 1	通道 2	通道 3	通道 4	通道 5
				TIM1_CH4	TIM1 UP
TIM1		TIM1_CH1	TIM1_CH2	TIM1_TRIG	_
				TIM1_COM	TIM1_CH3
TIM2	TIM2_CH3	TIM2_UP	TIM2_CH2	TIM2_CH4	TIM2_CH1
TIM3		TIM3_CH3	TIM3_CH4	TIM3_CH1	
TIVIS		111013_0113	TIM3_UP	TIM3_TRIG	
TIM16			TIM16_CH1 ⁽¹⁾	TIM16_CH1 ⁽²⁾	
TIMITO			TIM16_UP ⁽¹⁾	TIM16_UP ⁽²⁾	
TIM17	TIM17_CH1 ⁽¹⁾	TIM17_CH1 ⁽²⁾			
I IIVI I 7	TIM17_UP ⁽¹⁾	TIM17_UP ⁽²⁾			
	TIMO CUO	TIM8_CH4			
TIM8	TIM8_CH3	TIM8_TRIG	TIM8_CH1		TIM8_CH2
	TIM8_UP	TIM8_COM			

- 1. 如果 SYSCFG_CFGR 寄存器的映射位被清除, DMA 请求被映射在这个 DMA 通道。
- 2. 如果 SYSCFG_CFGR 寄存器的映射位被置位, DMA 请求被映射在这个 DMA 通道。

11.4 DMA 寄存器描述

表 36. DMA 寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	DMA_ISR	DMA 中断状态寄存器	0x00000000	小节 11.4.1
0x04	DMA_IFCR	DMA 中断标志清除寄存器	0x00000000	小节 11.4.2
0x08 + 20 × (n - 1)	DMA_CCRx	DMA 通道 x 配置寄存器	0x00000000	小节 11.4.3
0x0C + 20 × (n - 1)	DMA_CNDTRx	DMA 通道 x 传输数量寄存器	0x00000000	小节 11.4.4
0x10 + 20 × (n - 1)	DMA_CPARx	DMA 通道 x 外设地址寄存器	0x00000000	小节 11.4.5
0x14 + 20 × (n - 1)	DMA_CMARx	DMA 通道 x 存储器地址寄存器	0x00000000	小节 11.4.6

11.4.1 DMA 中断状态寄存器 (DMA_ISR)

偏移地址: 0x00

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved								TEIF5	HTIF5	TCIF5	GIF5			
												r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TEIF4	HTIF4	TCIF4	GIF4	TEIF3	HTIF3	TCIF3	GIF3	TEIF2	HTIF2	TCIF2	GIF2	TEIF1	HTIF1	TCIF1	GIF1
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bit	Field	Туре	Reset	Description
31 : 20	Reserved			保留,始终读为0。
19,15,11,	TEIFx	r	0x00	通道 x 的传输错误标志 (x = 1 ···5)(Channel x transfer error
7, 3				flag)
				硬件设置这些位。在 DMA_IFCR 寄存器的相应位写入'1'
				可以清除这里对应的标志位。
				0: 在通道 x 没有传输错误 (TE)
				1: 在通道 x 发生了传输错误 (TE)
18,14,10,	HTIFx	r	0x00	通道 x 的半传输标志 (x = 1 …5)(Channel x half transfer
6, 2				flag)
				硬件设置这些位。在 DMA_IFCR 寄存器的相应位写入'1'
				可以清除这里对应的标志位。
				0: 在通道 x 没有半传输事件 (HT)
				1: 在通道 x 产生了半传输事件 (HT)
17,13,9,	TCIFx	r	0x00	通道 x 的传输完成标志 (x = 1 ···5)(Channel x transfer com-
5, 1				plete flag)
				硬件设置这些位。在 DMA_IFCR 寄存器的相应位写入'1'
				可以清除这里对应的标志位。
				0: 在通道 x 没有传输完成事件 (TC)
40.40.0	OIF		000	1: 在通道 x 产生了传输完成事件 (TC)
16,12,8,	GIFx	r	0x00	通道 x 的全局中断标志 (x = 1 ···5)(Channel x global inter-
4, 0				rupt flag)
				硬件设置这些位。在 DMA_IFCR 寄存器的相应位写入'1'
				可以清除这里对应的标志位。
				0: 在通道 x 没有 TE、HT 或 TC 事件
				1: 在通道 x 产生了 TE、HT 或 TC 事件

11.4.2 DMA 中断标志清除寄存器 (DMA_IFCR)

偏移地址: 0x04

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved											CTE IF5	CHT IF5	CTC IF5	CG IF5
												W	W	W	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CTE IF4	CHT IF4	CTC IF4	CG IF4	CTE IF3	CHT IF3	CTC IF3	CG IF3	CTE IF2	CHT IF2	CTC IF2	CG IF2	CTE IF1	CHT IF1	CTC IF1	CG IF1
w	w	w	W	W	W	w	w	w	w	w	w	w	W	w	w

Bit	Field	Туре	Reset	Description
31 : 20	Reserved			保留,始终读为0。

Bit	Field	Туре	Reset	Description
19,15,11, 7, 3	CTEIFx	W	0x00	清除通道 x 的传输错误标志 (x = 1 ···5)(Channel x transfer error clear) 这些位由软件设置和清除。 0: 不起作用 1: 清除 DMA_ISR 寄存器中的对应 TEIF 标志
18,14,10, 6, 2	CHTIFx	W	0x00	清除通道 x 的半传输标志 (x = 1 ···5)(Channel x half transfer clear) 这些位由软件设置和清除。 0: 不起作用 1: 清除 DMA_ISR 寄存器中的对应 HTIF 标志
17,13,9, 5, 1	CTCIFx	W	0x00	清除通道 x 的传输完成标志 (x = 1 ···5)(Channel x transfer complete clear) 这些位由软件设置和清除。 0: 不起作用 1: 清除 DMA_ISR 寄存器中的对应 TCIF 标志
16,12,8, 4, 0	CGIFx	W	0x00	清除通道 x 的全局中断标志 (x = 1 ···5)(Channel x global interrupt clear) 这些位由软件设置和清除。 0: 不起作用 1: 清除 DMA_ISR 寄存器中的对应的 GIF、TEIF、HTIF 和 TCIF 标志

11.4.3 DMA 通道 x 配置寄存器 (DMA_CCRx) (x = 1…5)

偏移地址: 0x08 + 20 x (通道编号 - 1)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ARE	MEM2 MEM	Pl	L	MS	IZE	PSIZE		MINC	PINC	CIRC	DIR	TEIE	HTIE	TCIE	EN

Bit	Field	Туре	Reset	Description							
31 : 16	Reserved			保留,始终读为0。							
15	ARE	rw	0x00	自动重装使能 (Auto-Reload Enable)							
				该位由软件设置和清除。在中止传输后,每个通道的 NDT,							
				PADDR, MADDR 寄存器是否回到设置的初值:							
				1: 中止传输后自动重装设置的初值							
				0: 禁止自动重载功能							

Bit	Field	Туре	Reset	Description
14	MEM2MEM	rw	0x00	存储器到存储器模式 (Memory to memory mode) 该位由软件设置和清除。 0: 非存储器到存储器模式 1: 启动存储器到存储器模式
13 : 12	PL	rw	0x00	通道优先级 (Channel priority level) 这些位由软件设置和清除。 00: 低 01: 中 10: 高 11: 最高
11 : 10	MSIZE	rw	0x00	存储器数据宽度 (Memory size) 这些位由软件设置和清除。 00:8位 01:16位 10:32位 11:保留
9:8	PSIZE	rw	0x00	外设数据宽度 (Peripheral size) 这些位由软件设置和清除。 00:8位 01:16位 10:32位 11:保留
7	MINC	rw	0x00	存储器地址增量模式 (Memory increment mode) 该位由软件设置和清除。 0: 不执行存储器地址增量操作 1: 执行存储器地址增量操作
6	PINC	rw	0x00	外设地址增量模式 (Peripheral increment mode) 该位由软件设置和清除。 0: 不执行外设地址增量操作 1: 执行外设地址增量操作
5	CIRC	rw	0x00	循环模式 (Circular mode) 该位由软件设置和清除。 0:不执行循环操作 1:执行循环操作
4	DIR	rw	0x00	数据传输方向 (Data transfer direction) 该位由软件设置和清除。 0: 从外设读 1: 从存储器读
3	TEIE	rw	0x00	允许传输错误中断 (Transfer error interrupt enable) 该位由软件设置和清除。 0: 禁止 TE 中断 1: 允许 TE 中断

Bit	Field	Туре	Reset	Description
2	HTIE	rw	0x00	允许半传输中断 (Half transfer interrupt enable)
				该位由软件设置和清除。
				0: 禁止 HT 中断
				1: 允许 HT 中断
1	TCIE	rw	0x00	允许传输完成中断 (Transfer complete interrupt enable)
				该位由软件设置和清除。
				0: 禁止 TC 中断
				1: 允许 TC 中断
0	EN	rw	0x00	通道开启 (Channel enable)
				该位由软件设置和清除。
				0: 通道不工作
				1 . 通道开启

11.4.4 DMA 通道 x 传输数量寄存器 (DMA_CNDTRx) (x = 1…5)

偏移地址: 0x0C + 20 x (通道编号 - 1)

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	- 17	10	12		10			•							
	NDT														
							r	w							

Bit	Field	Туре	Reset	Description
31 : 16	Reserved			保留,始终读为0。
15:0	NDT	rw	0x0000	数据传输数量 (Number of data to transfer)
				数据传输数量为 0~65535。这个寄存器只能在通道不工
				作 (DMA_CCRx 的 EN = 0) 时写入。通道开启后该寄存器
				变为只读,指示剩余的待传输的字节数目。寄存器内容在
				每次 DMA 传输后递减。数据传输结束后,寄存器的内容或
				者变为0;或者当该通道配置为自动重加载模式时,寄存器
				的内容将被自动重新加载为之前配置时的数值。
				当寄存器的内容为0时,无论通道是否开启,都不会发生
				任何数据传输。

11.4.5 DMA 通道 x 外设地址寄存器 (DMA_CPARx) (x = 1…5)

偏移地址: 0x10 + 20 x (通道编号 - 1)

复位值: 0x0000 0000

当开启通道 (DMA_CCRx 的 EN = 1) 时不能写该寄存器。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	PA														
	rw														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							F	PΑ							
rw															

Bit	Field	Туре	Reset	Description
31 : 0	PA	rw	0x0000	外设地址 (Peripheral address)
			0000	外设数据寄存器的基地址,作为数据传输的源或目标。
				当 PSIZE = '01'(16位),不使用 PA[0]位。操作自动地
				与半字地址对齐。
				当 PSIZE = '10'(32位),不使用 PA[1:0]位。操作自动
				地与字地址对齐。

11.4.6 DMA 通道 x 存储器地址寄存器 (DMA_CMARx) (x = 1…5)

偏移地址: 0x14 + 20 x (通道编号 - 1)

复位值: 0x0000 0000

当开启通道 (DMA_CCRx 的 EN = 1) 时不能写该寄存器。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	MA														
	rw														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	MA														
							r	W							

Bit	Field	Туре	Reset	Description
31 : 0	MA	rw	0x0000	存储器地址 (Memory address)
			0000	存储器地址作为数据传输的源或目标。
				当 MSIZE = '01'(16位),不使用 MA[0]位。操作自动地
				与半字地址对齐。
				当 MSIZE = '10'(32位),不使用 MA[1:0]位。操作自
				动地与字地址对齐。

12

模拟/数字转换 (ADC)

模拟/数字转换 (ADC)

12.1 ADC 介绍

12 位 ADC 是逐次逼近式的模拟一数字转换器 (SAR A/D 转换器)。

A/D 转换器支持多种工作模式:单次转换和连续转换模式,并且可以选择通道自动扫描。A/D 转换的启动方式有软件设定、外部引脚触发以及各个定时器启动。

窗口比较器 (模拟看门狗) 允许应用程序检测输入电压是否超出了用户设定的高/低阈值值。 ADC 的输入时钟不得超过 15MHz, 它是由 PCLK2 经分频产生。

12.2 ADC 主要特征

- 最高 12 位可编程分辨率的 SAR ADC, 其中 ADC1 多达 12 路外部输入通道和 2 路内部通道, ADC2 多达 12 路外部输入通道。两个 ADC 共享 8 个外部通道, 并各有 4 个独立的外部通道
- 高达 1Msps 转换速率
- 支持多种工作模式:
 - 单次转换模式: A/D 转换在指定通道完成一次转换
 - 单周期扫描模式: A/D 转换在所有指定通道完成一个周期 (从低序号通道到高序号通道) 转换
 - 连续扫描模式: A/D 转换连续执行单周期扫描模式直到软件停止 A/D 转换
- 通道采样时间,分辨率可软件配置
- 支持 DMA 传输
- · A/D 转换开始条件:
 - 软件启动
 - 外部触发启动
 - Timer 匹配
- 模拟看门狗,转换结果可和指定的值相比较,当转换值和设定值相匹配时,用户可设定是否产生中断请求

12.3 ADC 功能描述

下图显示了 ADC 框图

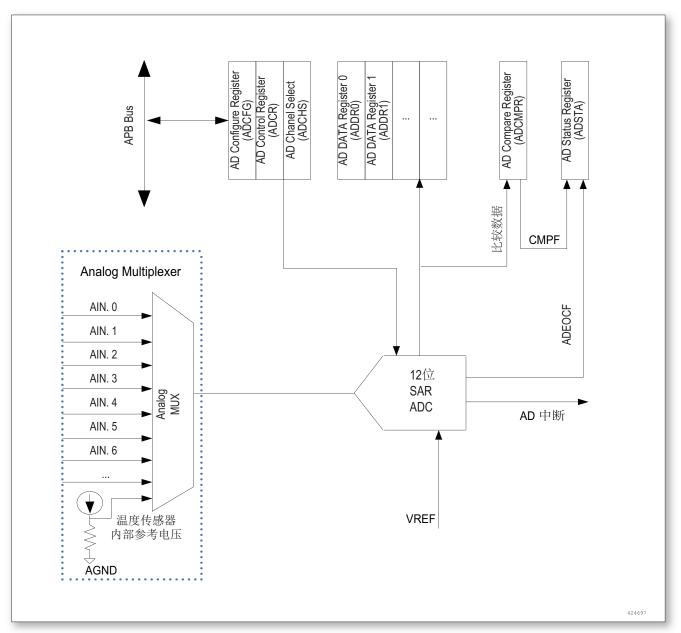


图 23. ADC 框图

12.3.1 ADC 开关控制

通过设置 ADCFG 寄存器的 ADEN 位可给 ADC 上电。当第一次设置 ADEN 位时,它将 ADC 从断电状态下唤醒。

ADC 上电延迟一段时间后,设置 ADCR 寄存器的 ADST 位开始进行转换。

通过清除 ADST 位可以停止转换,清除 ADEN 位可置于断电模式。

12.3.2 通道选择

包含多路外部输入通道、内部温度传感器通道和内部 1.2V 参考电压通道。每个外部输入通道都有独立的使能位,可通过设置 ADCHS 寄存器的对应位来设置。

12.4 ADC 工作模式

12.4.1 单次转换模式

在单次转换模式下, A/D 转换相应通道上只执行一次, 具体流程如下:

- 通过软件、外部触发输入及定时器溢出置位 ADCR 寄存器的 ADST, 开始 A/D 转换。
- A/D 转换完成时, A/D 转换的数据值将存储于 A/D 的数据寄存器 ADDATA 和 ADDRn 中。
- A/D 转换完成时, 状态寄存器 ADSTA 的 ADIF 位置 1。若此时控制寄存器 ADCR 的 ADIE 位置 1,将产生 AD 转换结束中断请求。
- A/D 转换期间, ADST 位保持为 1。A/D 转换结束时, ADST 位自动清 0, A/D 转换器进入空闲模式。

注: 在单次转换模式下, 如果软件使能多于一个通道, 序号最小的通道被转换, 其他通道被忽略。

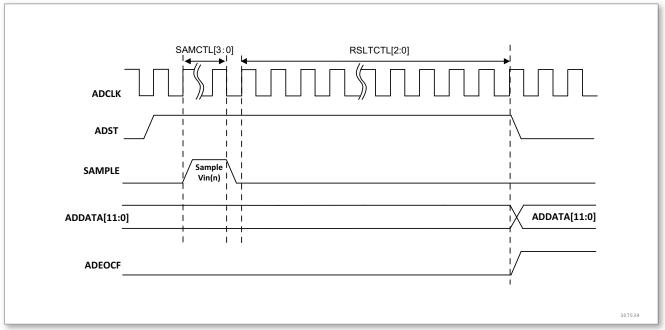


图 24. 单次转换模式时序图

12.4.2 单周期扫描模式

在单周期扫描模式下,将对始能的通道按顺序 (可通过配置寄存器位 SCAN_DIR 选择扫描通道方向) 进行一次 A/D 转换,操作步骤如下:

- 软件或外部触发置位 ADST 开始,方向设置默认从最小序号通道到最大序号通道的 A/D 转换,也可按照程序设置,从最大序号通道到最小序号通道的 A/D 转换。
- 每路 A/D 转换完成后,A/D 转换数值将有序装载到相应通道的数据寄存器中,ADIF 转换结束标志被设置,如果设置了转换结束中断,则在所有通道转换都完成后产生中断请求。
- 转换结束后, ADST 位自动清 0, A/D 转换器进入空闲状态。

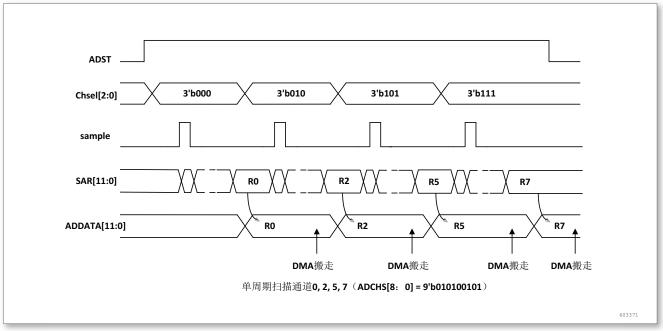


图 25. 单周期扫描下使能通道转换时序图 (通道方向从低到高)

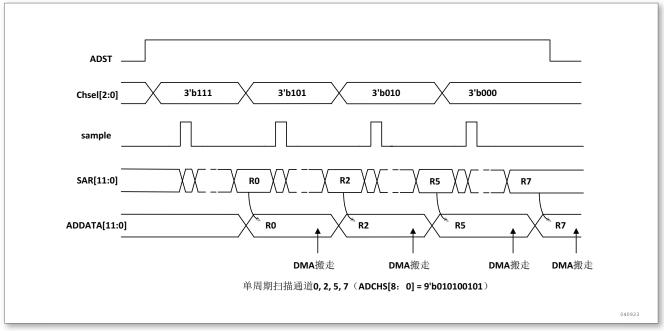


图 26. 单周期扫描下使能通道转换时序图 (通道方向从高到低)

12.4.3 连续扫描模式

在连续扫描模式下,A/D 转换在 ADCHS 寄存器中的 CHENn 位被使能的通道上顺序进行 (可通过配置寄存器位 SCAN DIR 选择扫描通道方向),操作步骤如下:

- 软件或外部触发置位 ADST 开始,外部触发可软件配置触发延时,方向设置默认从最小序号通道到最大序号通道的 A/D 转换,也可按照程序设置,从最大序号通道到最小序号通道的 A/D 转换。
- 当所有通道的 A/D 转换完成一遍后, A/D 转换数值将有序装载到相应的数据寄存器中, ADIF 转换结束标志被设置,如果设置了转换结束中断,则在所有通道转换都完成后产生 中断请求。

• 只要 ADST 位保持为 1,持续进行 A/D 转换。当 ADST 位被清 0, A/D 转换完成,A/D 转换器进入空闲状态。当 ADST 清 0, A/D 转换将完成当前转换。

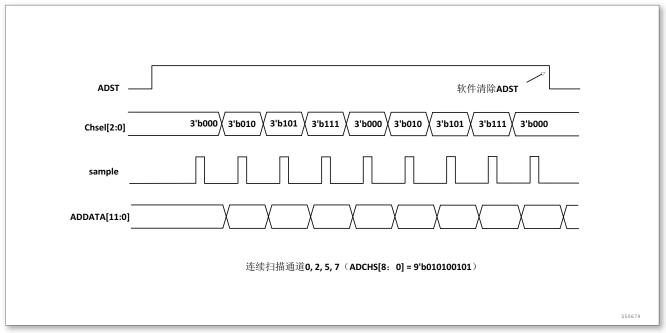


图 27. 连续扫描模式使能通道转换时序图 (通道方向由低到高)

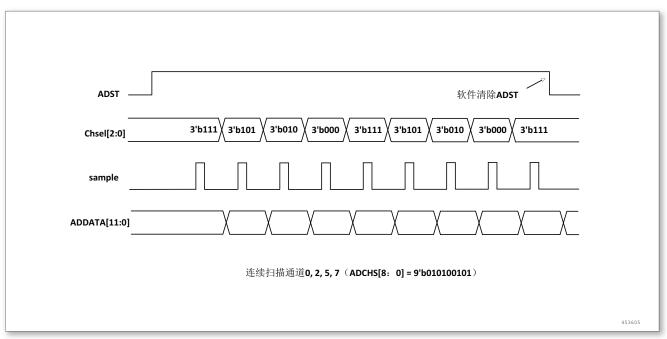


图 28. 连续扫描模式使能通道转换时序图 (通道方向由高到低)

12.4.4 DMA 请求

单周期扫描和连续扫描时通道转换的值存储在各自通道的数据寄存 (ADDRn) 中,最近一次转换的结果也会保存在 ADDATA 寄存器中。DMA 传输时可以选择传输某个特定通道的数据,或者传输所有扫描通道的结果。

12.5 数据对齐

ADCR 寄存器中的 ALIGN 位选择转换后数据储存的对齐方式。数据可以左对齐或右对齐,如下图所示。

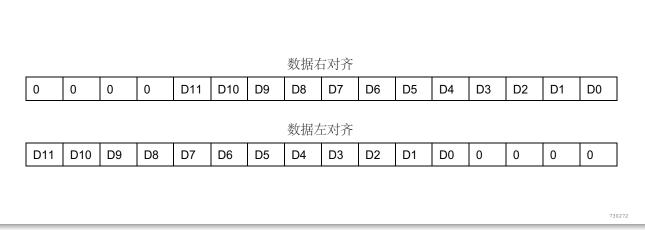


图 29. 数据对齐方式

12.5.1 可编程分辨率

ADC 转换有效位数可通过 ADC_CFG 寄存器中的 RSLTCTL[2: 0] 位更改,以便加快数据转换速率,有效数据位是在 12 位数据高位对齐。

12.5.2 可编程采样时间

ADC 的时钟 ADCLK 由 PCLK2 分频得到,分频系数可通过设置 ADCFG 寄存器的 ADCPRE 位来确定,即 PCLK2 / (N+1) / 2 分频后作为 ADC 时钟。

设置 ADC 分辨率为 n 位 (n=8,9,10,11,12),每个通道采样周期为 m,采样周期数目可以通过 ADC_CFG 寄存器中的 SAMCTL 位更改。

采样频率采样时间计算如下:

 $F_{\text{sample}} = F_{\text{ADCLK}} / (m + n + 1.5)$

例如:

当 ADCCLK = 15MHz, 分辨率配置为 12Bit, 采样时间为 1.5 周期

F_{sample} = F_{ADCLK} / 15.

T_{CONV} = 1.5 + 13.5 = 15 周期 = 1μs

12.6 外部触发转换

ADC 转换可以由外部事件触发 (例如定时器捕获, EXTI 线)。如果设置了 ADCR 寄存器的 TRGEN 位,就可以使用外部事件触发转换。通过设置 TRGSEL 位可以选择外部触发源。

具体的外部触发源选择情况,可以参考 AD 控制寄存器相关位的描述。

外部触发可设置延时控制,具体参考 ADCR[21:19] 的 TRGSHIFT 的描述。

在触发信号产生后,延时 N 个 PCLK2 的时钟周期再开始采样。如果是触发扫描模式,只有第一个通道采样被延时,其余通道是在上一个采样结束后立即开始。

12.7 温度传感器

温度传感器可以用来测量器件周围的温度 (TA)。

温度传感器在内部和 ADC 的内部信号源通道相连接,此通道把传感器输出的电压转换成数字值。当传感器不使用时,可设置寄存器相应位来单独关闭。

温度传感器输出电压随温度线性变化,由于生产过程的变化,温度变化曲线的偏移在不同芯片上会有不同。

内部温度传感器更适合于检测温度的变化,而不是测量绝对的温度。如果需要测量精确的 温度,应该使用一个外置的温度传感器。

温度数值计算如下:

 $T(^{\circ}C) = (V_{SENSE} - V_{25}) / Avg_Slope + 25$

V₂₅: 25°C 时的 V_{SENSE} 值

V_{SENSE}: 温度传感器当前的输出电压

V_{SENSE} = Value * V_{dd} / 4096 (Value 是 ADC 的转换结果数据)

Avg Slope: 温度与 V_{SENSE} 曲线的平均斜率 (以 mV/°C 或 μV/°C 表示)

V₂₅ 和 Avg Slope 的典型值请参考数据手册温度传感器章节。

12.8 内部基准参考电压

ADC 的内部信号源通道连接了一个内部基准参考电压,大小为 1.2V,此通道把 1.2v 的参考电压输出转换为数字值。

内部参考电压有单独的始能位,可通过设置寄存器的相应位开启或关闭。

12.9 窗口比较器模式下 AD 转换结果监控

比较模式下提供了上限和下限两个比较寄存器。可通过软件设定 CMPCH 位选择监控通道。

当 CPMHDATA ≥ CPMLDATA 时,比较结果大于或等于 ADCMPR 寄存器的 CMPHDATA 指定值或者小于 CMPLDATA 指定值,状态寄存器 ADSTA 的 ADWIF 位置 1。

当 CPMHDATA < CPMLDATA 时,比较结果如果等于 CPMHDATA 指定值或者处于两个指定值之间,则状态寄存器 ADSTA 的 ADWIF 位置 1。如果控制寄存器 ADCR 的 ADWIE 置位,将产生中断请求。

12.10 ADC 寄存器描述

表 37. ADC 寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	ADC_ADDATA	A/D 数据寄存器	0x00000000	小节 12.10.1
0x04	ADC_ADCFG	A/D 配置寄存器	0x00000000	小节 12.10.2
0x08	ADC_ADCR	A/D 控制寄存器	0x00000000	小节 12.10.3
0x0C	ADC_ADCHS	A/D 通道选择寄存器	0x00000000	小节 12.10.4

Offset	Acronym	Register Name	Reset	Section
0x10	ADC_ADCMPR	A/D 窗口比较寄存器	0x00000000	小节 12.10.5
0x14	ADC_ADSTA	A/D 状态寄存器	0x00000000	小节 12.10.6
0x18~ 0x44	ADC_ADDR 0 ~ 11	A/D 数据寄存器	0x00000000	小节 12.10.7
0x50~ 0x54	ADC_ADDR 14 ~ 15	A/D 数据寄存器	0x00000000	小节 12.10.7
0x58	ADC_ADSTA_EXT	A/D 扩展状态寄存器	0x00000000	小节 12.10.8

12.10.1 A/D 数据寄存器 (ADC_ADDATA)

地址偏移: 0x00

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				Res	erved					VAILD	OVER RUN		CHANN	ELSEL	
										r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DA	ιTΑ							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bit	Field	Туре	Reset	Description
31 : 22	Reserved			保留,始终读为0。
21	VALID	r	0x00	有效标志位 (只读)(Valid flag)
				1 = DATA[11: 0] 位数据有效
				0 = DATA[11: 0] 位数据无效
				相应模拟通道转换完成后,将该位置位,读 ADDATA 寄存
				器后,该位由硬件清除。
20	OVERRUN	r	0x00	数据覆盖标志位 (只读)(Overrun flag)
				1 = DATA[11: 0] 数据被覆盖
				0 = DATA[11: 0] 数据最近一次转换结果
				新的转换结果装载至寄存器之前,若 DATA[11:0] 的数据
				没有被读取,OVERRUN 将置 1。读 ADDATA 寄存器后,
				该位由硬件清除。

Bit	Field	Туре	Reset	Description
19 : 16	CHANNELSEI	L r	0x00	该 4 位显示当前数据所对应的通道 (Channel selection)
				0000 = 通道 0 的转换数据
				0001 = 通道 1 的转换数据
				0010 = 通道 2 的转换数据
				0011 = 通道 3 的转换数据
				0100 = 通道 4 的转换数据
				0101 = 通道 5 的转换数据
				0110 = 通道 6 的转换数据
				0111 = 通道 7 的转换数据
				1000 = 通道 8 的转换数据
				1001 = 通道 9 的转换数据
				1010 = 通道 10 的转换数据
				1011 = 通道 11 的转换数据
				1110 = 温度传感器的转换数据
				1111 = 内部参考电压的转换数据
				其他: 无效
15 : 0	DATA	r	0x00	12 位 A/D 转换结果 (Transfer data)
				根据设置左对齐或者右对齐。

12.10.2 A/D 配置寄存器 (ADC_ADCFG)

地址偏移: 0x04

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	ADCPRE		SAM	ICTL			RSLTCTL			ADCPRE		VSEN	TSEN	ADWEN	ADEN
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31 : 15	Reserved			保留,始终读为0。
14	ADCPRE	rw	0x00	ADC 预分频 (ADC prescaler)
				作为 ADCPRE[3:0] 的最低位,与 Bit[6:4] 合用

Bit	Field	Type	Reset	Description
13 : 10	SAMCTL	rw	0x00	选择通道 x 的采样时间 (Channel x Sample time selection)
				这些位用于独立地选择每个通道的采样时间。在采样周期
				中通道选择位必须保持不变。
				0000: 1.5 周期 0100: 41.5 周期
				0001: 7.5 周期 0101: 55.5 周期
				0010: 13.5 周期 0110: 71.5 周期
				0011: 28.5 周期 0111: 239.5 周期
				1000: 2.5 周期 1001: 3.5 周期
				1010: 4.5 周期 1011: 5.5 周期
				1100: 6.5 周期 其他: 保留
9:7	RSLTCTL	rw	0x00	选择 ADCx 转换数据分辨率 (resolution)
				000: 12 位有效 001: 11 位有效
				010: 10 位有效 011: 9 位有效
				100:8 位有效
6:4	ADCPRE	rw	0x00	ADC 预分频 (ADC prescaler)
				由软件置'1'或清'0'来确定 ADC 时钟频率。
				Bit[14] 为 0 时,实际分频系数为 (2 * (ADCPRE + 1))
				Bit[14] 为 1 时,实际分频系数为 (2 * (ADCPRE + 1) + 1)
3	VSEN	rw	0x00	内部参考电压使能 (Voltage Sensor enable)
				1: 内部电压传感器使能
				0: 内部电压传感器禁用
2	TSEN	rw	0x00	温度传感器使能控制位 (Temperature sensor enable)
				1 = 温度传感器使能
				0 = 温度传感器禁止
1	ADWEN	rw	0x00	A/D 窗口比较器使能 (ADC window comparison enable)
				1 = A/D 窗口比较器使能
				0 = A/D 窗口比较器禁用
0	ADEN	rw	0x00	A/D 转换使能 (ADC enable)
				1 = 使能
				0 = 禁用

12.10.3 A/D 控制寄存器 (ADC_ADCR)

地址偏移: 0x08

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				Rese	rved					Т	RGSHIF	Γ	TRG	SEL	SCANDIR
										rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CM	PCH		ALIGN	AD	MD	ADST	Res.		TRGSEL		DMAEN	TRGEN	ADWIE	ADIE
rw	rw	rw	rw	rw	rw	rw	rw		rw	rw	rw	rw	rw	rw	rw

116/487

Bit	Field	Туре	Reset	Description
31 : 22	Reserved			保留,始终读为0。
21:19	TRGSHIFT	rw	0x00	外部触发延时采样 (External trigger shift sample) 在触发信号产生后,延时 N 个 PCLK2 的时钟周期再开始 采样。 如果是触发扫描模式,其他通道是在上一个采样结束后立 即开始。 0: 不延时 1: 4 个周期 2: 16 个周期 3: 32 个周期 4: 64 个周期 5: 128 个周期 6: 256 个周期 7: 512 个周期
18 :17	TRGSEL	rw	0x00	外部触发源选择 (External trigger selection) 与 Bit[6:4] 合用
16	SCANDIR	rw	0x00	ADC 扫描通道顺序 (ADC scan direction) 在单周期扫描或者连续扫描方式时,设置扫描通道的顺序 0: ADC 通道选择寄存器按从低到高的顺序扫描 1: ADC 通道选择寄存器按从高到低的顺序扫描
15:12	СМРСН	rw	0x00	窗口比较通道选择 (Window comparison channel selection) 0000 = 选择比较通道 0 转换结果 0001 = 选择比较通道 1 转换结果 0010 = 选择比较通道 2 转换结果 0011 = 选择比较通道 3 转换结果 0100 = 选择比较通道 5 转换结果 0101 = 选择比较通道 6 转换结果 0111 = 选择比较通道 7 转换结果 1000 = 选择比较通道 8 转换结果 1001 = 选择比较通道 9 转换结果 1011 = 选择比较通道 10 转换结果 1010 = 选择比较通道 11 转换结果 1111 = 选择比较通道 11 转换结果
11	ALIGN	rw	0x00	数据对齐 (Data alignment) 0:右对齐 1:左对齐
10:9	ADMD	rw	0x00	A/D 转换模式 (ADC mode) 00: 单次转换 01: 单周期扫描 10: 连续扫描 当改变转换模式时,软件要先禁用 ADST 位。

Bit	Field	Туре	Reset	Description
8	ADST	rw	0x00	A/D 转换开始 (ADC start) 1 = 转换开始 0 = 转换结束或进入空闲状态 ADST 置位有下列两种方式: 在单次模式或者单周期模式下,转换完成后,ADST 将被硬件自动清除。 在连续扫描模式下,A/D 转换将一直进行,直到软件写'0'到该位或系统复位。
7	Reserved			保留,始终读为0。
6:4	TRGSEL	ΓW	0x00	外部触发源选择 (External trigger selection), 位 [18:17,6:4] 选择外部触发源 ADC1 和 ADC2 的外部触发相同,配置如下: 00000: TIM1_CC1 00001: TIM1_CC2 00010: TIM1_CC3 00011: TIM2_CC2 00100: TIM3_TRGO 00101: TIM3_CC1 00111: EXTI 线 11 01000: TIM1_TRGO 01001: TIM8_CC4 01010: TIM8_CC4 01010: TIM8_CC4 01010: TIM8_CC4 01101: TIM2_CC1 01110: TIM3_CC1 01111: EXTI 线 15 10000: TIM1_TRGO
3	DMAEN	rw	0x00	DMA 使能 (Direct memory access enable) 1 = DMA 请求使能 0 = DMA 禁止
2	TRGEN	rw	0x00	外部硬件触发源 (External trigger enable) 1 = 使用外部触发信号启动 A/D 转换 0 = 不用外部触发信号启动 A/D 转换
1	ADWIE	rw	0x00	A/D 窗口比较器中断使能 (ADC window comparator interrupt enable) 1 = 使能 A/D 窗口比较器中断 0 = 禁用 A/D 窗口比较器中断

Bit	Field	Туре	Reset	Description
0	ADIE	rw	0x00	A/D 中断使能 (ADC interrupt enable)
				1 = 使能 A/D 中断
				0 = 禁用 A/D 中断
				如果 ADIF 置位, A/D 转换结束后产生中断请求。

12.10.4 A/D 通道选择寄存器 (ADC_ADCHS)

地址偏移: 0x0C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CHENVS	CHENTS	Reser	rved	CHEN11	CHEN10	CHEN9	CHEN8	CHEN7	CHEN6	CHEN5	CHEN4	CHEN3	CHEN2	CHEN1	CHEN0
rw	rw			rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31 : 16	Reserved			保留,始终读为0。
15	CHENVS	rw	0x00	内部参考电压使能 (Voltage Sensor enable) 1 = 使能
				0 = 禁用
14	CHENTS	rw	0x00	温度传感器使能 (Temperature Sensor enable)
				1 = 使能
				0 = 禁用
13: 12	Reserved			保留,始终读为0。
11	CHEN11	rw	0x00	模拟输入通道 11 使能 (Analog input channel 11 enable)
				1 = 使能
				0 = 禁用
10	CHEN10	rw	0x00	模拟输入通道 10 使能 (Analog input channel 10 enable)
				1 = 使能
				0 = 禁用
9	CHEN9	rw	0x00	模拟输入通道 9 使能 (Analog input channel 9 enable)
				1 = 使能
				0 = 禁用
8	CHEN8	rw	0x00	模拟输入通道 8 使能 (Analog input channel 8 enable)
				1 = 使能
				0 = 禁用
7	CHEN7	rw	0x00	模拟输入通道 7 使能 (Analog input channel 7 enable)
				1 = 使能
				0 = 禁用

Bit	Field	Туре	Reset	Description
6	CHEN6	rw	0x00	模拟输入通道 6 使能 (Analog input channel 6 enable) 1 = 使能 0 = 禁用
5	CHEN5	rw	0x00	模拟输入通道 5 使能 (Analog input channel 5 enable) 1 = 使能 0 = 禁用
4	CHEN4	rw	0x00	模拟输入通道 4 使能 (Analog input channel 4 enable) 1 = 使能 0 = 禁用
3	CHEN3	rw	0x00	模拟输入通道 3 使能 (Analog input channel 3 enable) 1 = 使能 0 = 禁用
2	CHEN2	rw	0x00	模拟输入通道 2 使能 (Analog input channel 2 enable) 1 = 使能 0 = 禁用
1	CHEN1	rw	0x00	模拟输入通道 1 使能 (Analog input channel 1 enable) 1 = 使能 0 = 禁用
0	CHEN0	rw	0x00	模拟输入通道 0 使能 (Analog input channel 0 enable) 1 = 使能 0 = 禁用

注:如果通道使能都为 0,则通道 0 使能。

12.10.5 A/D 窗口比较寄存器 (ADC_ADCMPR)

地址偏移: 0x10

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Rese	erved							CMPH	IDATA					
				rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	erved							CMPL	DATA					
				rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31 : 28	Reserved			保留,始终读为0。
27 : 16	CMPHDATA	rw	0x00	比较数值上限 (Compare data high limit)
				该 12 位数值将和指定通道的转换结果相比较。
15 : 12	Reserved			保留,始终读为0。
11:0	CMPLDATA	rw	0x00	比较数值下限 (Compare data low limit)
				该 12 位数值将和指定通道的转换结果相比较。

12.10.6 A/D 状态寄存器 (ADC_ADSTA)

地址偏移: 0x14

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	OVERRUN												VA	LID	
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			VA	LID					CHAI	NNEL		Res.	BUSY	ADWIF	ADIF
r	r	r	r	r	r	r	r	r	r	r	r		r	rc w1	rc w1

Bit	Field	Туре	Reset	Description
31 : 20	OVERRUN	r	0x00	通道 0 ~ 11 的数据覆盖标志位 (Overrun flag) 只读。
19 : 8	VALID	r	0x00	通道 0 ~ 11 的有效标志位 (Valid flag) 只读。
7:4	CHANNEL	r	0x00	当前转换通道 (Current conversion channel) 该 4 位在 BUSY = 1 时表示进行转换中的通道。BUSY = 0 时表示可进行下次转换的通道。
3	Reserved			保留,始终读为0。
2	BUSY	r	0x00	忙/空闲 (Busy) 1 = A/D 转换器忙碌 0 = A/D 转换器空闲
1	ADWIF	rc_w1	0x00	比较标志位 (ADC window comparator interrupt flag) 选择的 A/D 转换通道,结果大于等于 ADCMPHR 或小于 ADCMPLR,该位置'1'。 该标志位写'1'清零。
0	ADIF	rc_w1	0x00	A/D 转换结束标志位 (ADC interrupt flag) 该位由硬件在通道组转换结束时设置,由软件清除。 1 = A/D 转换完成 0 = A/D 转换未完成 该标志位写'1'清零。

12.10.7 A/D 数据寄存器 (ADC_ADDR0 ~ 11, 14 ~ 15)

地址偏移: 0x18 - 0x44, 0x50 - 0x54

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved										OVER RUN		Rese	rved	
										r	r				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DA	λTA							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bit	Field	Туре	Reset	Description
31 : 22	Reserved			保留,始终读为0。
21	VALID	r	0x00	有效标志位 (只读)(Valid flag)
				1 = DATA[11: 0] 位数据有效
				0 = DATA[11: 0] 位数据无效
				相应模拟通道转换完成后,将该位置位,读 ADDATA 寄存
				器后,该位由硬件清除。
20	OVERRUN	r	0x00	数据覆盖标志位 (只读)(Overrun flag)
				1 = DATA [11: 0] 数据被覆盖
				0 = DATA [11: 0] 数据最近一次转换结果
				新的转换结果装载至寄存器之前,若 DATA[11:0] 的数据
				没有被读取, OVERRUN 将置'1', 读 ADDATA 寄存器后,
				该位由硬件清除。
19 : 16	Reserved			保留,始终读为0。
15 : 0	DATA	r	0x00	通道的 12 位 A/D 转换结果 (Transfer data)
				根据设置左对齐或者右对齐。

12.10.8 A/D 扩展状态寄存器 (ADC_ADSTA_EXT)

地址偏移: 0x58

复位值: 0x0000 0000

			友型工	∄: UXU	1000 00	00									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved								RRUN	Rese	erved	VAI	_ID	Rese	erved
								r	r			r	r		

Bit	Field	Туре	Reset	Description
31 : 8	Reserved			保留,始终读为0。
7:6	OVERRUN	r	0x00	通道的数据覆盖标志位 (Overrun flag)
				10: 通道 15(V_SENSOR)
				01: 通道 14(T_SENSOR)
5:4	Reserved			保留,始终读为0。

Bit	Field	Type	Reset	Description
3:2	VALID	r	0x00	通道的有效标志位 (Valid flag)
				10: 通道 15(V_SENSOR)
				01: 通道 14(T_SENSOR)
1:0	Reserved			保留,始终读为0。

13 比较器 (COMP)

比较器 (COMP)

13.1 COMP 简介

芯片内嵌五个通用比较器 COMP1、COMP2、COMP3、COMP4 和 COMP5,可独立使用 (适用所有终端上的 I/O 口),也可与定时器结合使用。它们可用于多种功能,包括:

- 由模拟信号触发低功耗模式唤醒事件
- 调节模拟信号
- 与定时器输出的 PWM 相结合,组成逐周期的电流控制回路
- 支持五个独立的比较器

13.2 比较器主要特征

- 轨对轨比较器
- 每个比较器有可选门限
 - 可复用的 I/O 引脚
 - 内部比较电压 CRV 可选择 AVDD 或者内部基准电压的分压电压值
- 可编程迟滞电压
- 可编程的速率和功耗
- 支持比较结果的滤波功能
- 输出端可以重定向到一个 I/O 端口或多个定时器输入端,可以触发以下事件:
 - 捕获事件
 - OCref_clr 事件 (逐周期电流控制)
 - 为实现快速 PWM 关断的刹车事件
- 两个比较器可以组合在一个窗口比较器中使用。
- 每个比较器都可产生中断,并支持把 CPU 从睡眠和停机模式唤醒 (通过 EXTI 控制器)。
- COMP1/2/3 只有一个正相输入和一个反相输入
- COMP4/5 有 4 个正相输入和 4 个反相输入,带有轮询功能
 - 可以实现定周期切换的轮询功能
 - 可控制轮询通道 1/2/3 或 1/2
 - 可选固定反向输入端

13.3 比较器功能描述

13.3.1 简介

下图是比较器框图:

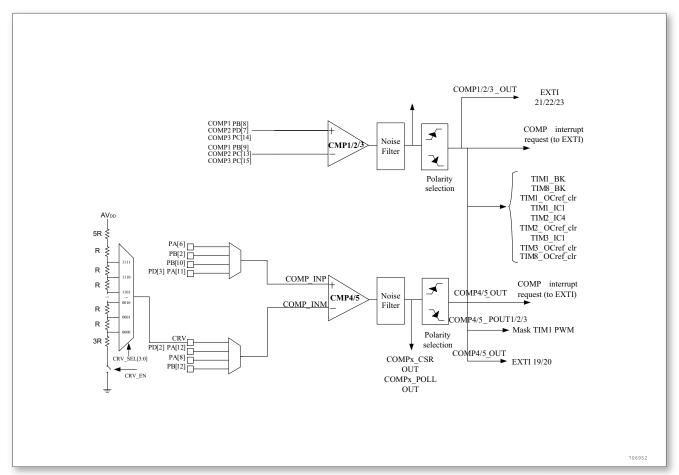


图 30. 比较器框图

13.3.2 时钟

COMP 时钟控制器提供的时钟与 PCLK 同步 (APB2 时钟)。在使用比较器之前,要先使能 RCC 控制器中的时钟使能控制位。

13.3.3 比较器开关控制

通过设置 COMPx_CSR 寄存器的 EN 位可给 COMP 上电。设置 EN 位时,它将 COMP 从断电状态唤醒,清除 EN 位可停止比较器工作。

13.3.4 比较器输入和输出

作为比较器输入的 I/O 引脚必须在 GPIO 寄存器中设置为模拟模式。

比较器的输出可以内部重定向到各种定时器输入:

- 作为刹车输入,紧急关闭 PWM 信号
- 作为 OCref_clr, 逐周期电流控制
- 作为输入捕捉,测量时序

13.3.5 比较器通道选择

COMP1/2/3 只有一个正相输入和一个反相输入通道,不能选择输入信号。

COMP4/5 有四个正相输入和四个反相输入通道,正相输入可从四个外部引脚之间选取,反

相输入可从三个外部引脚或者 CRV 电压分压值。CRV 的电压可选择 AVDD 或者内部基准 1.2V 的分压。

COMP4/5 的输入通道可以在普通工作模式下通过软件选择,也可以在轮询工作模式下通过硬件轮询的方式分时监测多个通道的比较结果,从逻辑上类似于多个比较器同时工作。在普通工作模式下,比较器 COMP4/5 比较所选择的 INP 和 INM 端口上的信号,具体流程如下:

- 配置 COMPx CSR 寄存器的 INP SEL 位和 INM SEL 位,选择所要比较的信号;
- •配置 COMPx_CSR 寄存器的 EN 位,比较器开始上电工作;
- 比较的结果存放于 COMPx_CSR 寄存器的 OUT 位。

另外,当 COMP4 和 COMP5 的 INM_SEL 选择 CRV 时,需要配置 COMP_CRV 寄存器的 CRV SEL 位,然后将 CRV EN 置位。

在轮询工作模式下, COMP4/5 的 INP 端口上的信号将会周期性的轮询变化, 而 INM 端口的信号可以配置 COMPx_POLL 寄存器的 FIXN 位选择跟随 INP 端口变化或者由 COMPx_CSR 的 INM_SEL 位来配置。需要注意的是, 当启动轮询功能以后, COMPx_CSR 的 INP_SEL 位将失去作用,同样的,如果 COMPx_POLL 寄存器的 FIXN 位选择 INM 端口跟随 INP 轮询变化, COMPx CSR 的 INN SEL 位也将失去作用。具体流程如下:

- 配置 COMPx POLL 寄存器的 PERIOD 位来选择所需要的轮询等待周期;
- 配置 COMPx_POLL 寄存器的 FIXN 位来决定 INM 端口的信号是否跟随 INP 端口轮询 变化:
- 配置 COMPx POLL 寄存器的 POLL CH 位决定所需要轮询的通道是 1/2/3 或者 1/2;
- 配置 COMPx POLL 寄存器的 POLL EN 位, 启动轮询功能;
- 配置 COMPx CSR 寄存器的 EN 位,比较器开始上电工作。
- 轮询比较的结果存放于 COMPx_POLL 寄存器的 POUT 位,其中 POUT[2]、POUT[1]、POUT[0] 位分别存放轮询通道 3/2/1 的比较结果。

13.3.6 中断和唤醒

比较器的输出可以内部连接到外部中断和事件控制器。每个比较器有自己的 EXTI 信号,能产生中断或事件。同样的机制可以用来退出低功耗模式。

详细内容可以参考手册的中断和事件部分。

13.3.7 功耗模式

在具体应用中可以通过调整比较器功耗和响应时间得到最优的结果。

COMPx CSR 寄存器的 MODE 位有下面几种设置:

- 00: 高速/高功耗
- 01: 中速/中等功耗
- 10: 低速/低功耗
- 11: 极低速/极低功耗

13.3.8 比较器锁定机制

比较器能用于安全的用途,比如过流或者过热保护。在某些特定的安全需求的应用中,有 必要保证比较器设置不能被无效寄存器访问或者程序计数器破坏所改变。 为了这个目的,比较器控制和状态寄存器可以设为写保护(只读)。

一旦设置完成,LOCK 位必须设为 1,这导致整个 COMPx_CSR 寄存器变成只读,包括 LOCK 位在内。写保护只能被 MCU 复位所清除。

13.3.9 迟滞现象

比较器的可配置迟滞电压能防止无效的输出变化产生的噪声信号。在不需要强制迟滞电压的情况下迟滞现象可以被禁止。

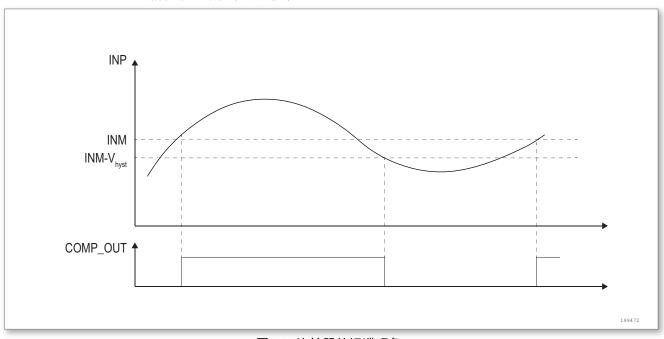


图 31. 比较器的迟滞现象

13.4 比较器寄存器描述

表 38. 比较器寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00, 0x04	COMPx_CSR(x=4, 5)	比较器 x(x=4,5) 控制和状态寄存器	0x00000000	小节 13.4.1
0x08, 0x0C, 0x14	COMPx_CSR(x=1_3)	比较器 x(x=1_3) 控制和状态寄存器	0x00000000	小节 13.4.2
0x18	COMP_CRV	比较器外部参考电压寄存器	0x00000000	小节 13.4.3
0x1C, 0x20	COMPx_POLL(x=4,5)	比较器 x(x=4,5) 轮询寄存器	0x00000000	小节 13.4.4

13.4.1 比较器控制状态寄存器 (COMPx_CSR)(x=4, 5)

地址偏移: 0x00, 0x04 复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
LOCK	OUT		Reserved OFLT								HYST				
rw	r										rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
POL	Res.		OUT	_SEL		Res.	INP_	_SEL	Res.	INM_	_SEL	МС	DE	Res.	EN
rw		rw	rw	rw	rw		rw	rw		rw	rw	rw	rw		rw

Bit	Field	Туре	Reset	Description
31	LOCK	rw	0x00	比较器锁 (Comparator lock) 该位只能写一次,由软件置'1',由系统复位清零。
				它令比较器 x 的所有控制位为只读。 1: COMPx_CSR 只读。 0: COMPx_CSR 可读可写
30	OUT	r	0x00	比较器 x 输出 (Comparator x lock) 只读,反映应比较器 x 输出状态。 1: 高输出 (同相输入高于反相输入) 0: 低输出 (同相输入低于反相输入)
29 : 21	Reserved			始终读为 0。
20:18	OFLT	rw	0x00	比较器 x 输出滤波 (Comparator output filter) 这些位控制比较器 x 的输出滤波,连续的 PCLK2 时钟比较器输出不变则认为是有效的结果,否则保持不变。111: 128 个时钟周期110: 64 个时钟周期101: 32 个时钟周期100: 16 个时钟周期011: 8 个时钟周期011: 8 个时钟周期011: 8 个时钟周期010: 4 个时钟周期001: 2 个时钟周期000: 无滤波
17 : 16	HYST	ΓW	0x00	比较器 x 迟滞电压 (Comparator x hysteresis) 这些位控制比较器 x 的迟滞电压。 11: 90mV 10: 30mV 01: 15mV 00: 0mV
15	POL	rw	0x00	比较器 x 输出极性 (Comparator x output polarity) 该位用于切换比较器 x 输出极性。 1: 反相输出 0: 同相输出
14	Reserved			始终读为 0。

Bit	Field	Туре	Reset	Description
13:10	OUT_SEL.	rw	0x00	比较器 x 输出选择 (Comparator x output selection) 这些位用来选择比较 x 输出方向。 0010: 定时器 1 刹车输入 0011: 定时器 8 刹车输入 0110: 定时器 1 Ocrefclear 输入 0111: 定时器 1 输入捕捉 1 1000: 定时器 2 输入捕捉 4 1001: 定时器 2 OCrefclear 输入 1010: 定时器 3 输入捕捉 1 1011: 定时器 3 Ocrefclear 输入 1111: 定时器 8 Ocrefclear 输入 其他: 无选择
9	Reserved			始终读为 0。
8:7	INP_SEL	rw	0x00	比较器 x 正相输入选择 (Comparator x normal phase input selection) 这些位用于选择连接到比较器 x 的正相输入的信号源。 比较器 4: 00: COMP4_INP0(PD3) 01: COMP4_INP3(PA6) 10: COMP4_INP2(PB2) 11: COMP4_INP1(PB10) 比较器 5: 00: COMP5_INP0(PA11) 01: COMP5_INP3(PA6) 10: COMP5_INP3(PA6)
6 5:4	Reserved INM_SEL	rw	0x00	始终读为 0。 比较器 x 反相输入选择 (Comparator x inverting input selection) 这些位用于选择连接到比较器 x 的反相输入的信号源。 比较器 4: 00:COMP4_INM0(PB12) 01:COMP4_INM1(PA8) 10:COMP4_INM3(CRV) 比较器 5: 00:COMP5_INM0(PB12) 01:COMP5_INM1(PA8) 10:COMP5_INM1(PA8)

Bit	Field	Туре	Reset	Description
3:2	MODE	rw	0x00	比较器 x 模式 (Comparator x mode)
				比较器x的工作模式控制位,允许调整速率和损耗。
				11: 极低功率
				10: 低功率
				01: 中等速率
				00: 高速率
1	Reserved			始终读为 0。
0	EN	rw	0x00	比较器 x 使能 (Comparator x enable)
				该位是比较器开关控制位。
				1: 比较器 x 打开
				0: 比较器 x 关闭

13.4.2 比较器控制状态寄存器 (COMPx_CSR)(x=1, 2, 3)

地址偏移: 0x08, 0x0C, 0x14

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
LOCK	OUT					Reserved						OFLT		НҮ	ST
rw	r										rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
POL	Res.		OUT	_SEL				Rese	erved			МО	DE	Res.	EN
rw		rw	rw	rw	rw						'	rw	rw		rw

Bit	Field	Type	Reset	Description
31	LOCK	rw	0x00	比较器锁 (Comparator lock)
				该位只能写一次,由软件置'1',由系统复位清零。
				它令比较器x的所有控制位为只读。
				1: COMPx_CSR 只读。
				0: COMPx_CSR 可读可写
30	OUT	r	0x00	比较器 x 输出 (Comparator x lock)
				只读,反映应比较器 x 输出状态。
				1: 高输出 (同相输入高于反相输入)
				0: 低输出 (同相输入低于反相输入)
29 : 21	Reserved			始终读为 0。

Bit	Field	Туре	Reset	Description
20 : 18	OFLT	rw	0x00	比较器 x 输出滤波 (Comparator output filter) 这些位控制比较器 x 的输出滤波,连续的 PCLK2 时钟比较器输出不变则认为是有效的结果,否则保持不变。 111:512 个时钟周期 110:256 个时钟周期 101:128 个时钟周期 100:64 个时钟周期 011:32 个时钟周期 011:4 个时钟周期 010:16 个时钟周期 010:16 个时钟周期 001:4 个时钟周期 001:4 个时钟周期
17 : 16	HYST	rw	0x00	比较器 x 迟滞电压 (Comparator x hysteresis) 这些位控制比较器 x 的迟滞电压。 11: 27mV 10: 18mV 01: 9mV 00: 0mV
15	POL	rw	0x00	比较器 x 输出极性 (Comparator x output polarity) 该位用于切换比较器 x 输出极性。 1: 反相输出 0: 同相输出
14 13:10	Reserved OUT_SEL	rw	0x00	始终读为 0。 比较器 x 输出选择 (Comparator x output selection) 这些位用来选择比较 x 输出方向。 0010: 定时器 1 刹车输入 0011: 定时器 8 刹车输入 0110: 定时器 1 Ocrefclear 输入 0111: 定时器 1 输入捕捉 1 1000: 定时器 2 输入捕捉 4 1001: 定时器 3 输入捕捉 1 1011: 定时器 3 Ocrefclear 输入 1111: 定时器 8 Ocrefclear 输入 其他: 无选择
9:43:2	Reserved MODE	rw	0x00	始终读为 0。 比较器 x 模式 (Comparator x mode) 比较器 x 的工作模式控制位,允许调整速率和损耗。 11: 极低功率 10: 低功率 01: 中等速率 00: 高速率
1	Reserved			始终读为 0。

Bit	Field	Туре	Reset	Description
0	EN	rw	0x00	比较器 x 使能 (Comparator x enable)
				该位是比较器开关控制位。
				1: 比较器 x 打开
				0: 比较器 x 关闭

13.4.3 比较器外部参考电压寄存器 (COMP_CRV)

地址偏移: 0x18

复位值: 0x0000 0000

31	30	29	28	27	26	25	24 Rese	23 erved	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved								CRV_ SRC	CRV_EN		CRV.	_SEL		
										rw	rw	rw	rw	rw	rw

Bit	Field	Type	Reset	Description
31 : 6	Reserved			始终读为 0。
5	CRV_SRC	rw	0x00	比较器外部参考电压源选择 (Comparator external reference voltage source select) 0: VREF 1: AVDD
4	CRV_EN	rw	0x00	比较器外部参考电压使能 (Comparator external reference voltage enable)

1: 比较器外部参考电压使能。

0: 比较器外部参考电压禁止。

Bit	Field	Туре	Reset	Description
3:0	CRV_SEL	rw	0x00	比较器外部参考电压选择 (Comparator external reference
				voltage select)
				选择比较器外部参考电压。
				0000: 1/20AVDD / VREF
				0001: 2/20AVDD / VREF
				0010: 3/20AVDD / VREF
				0011: 4/20AVDD / VREF
				0100: 5/20AVDD / VREF
				0101: 6/20AVDD / VREF
				0110: 7/20AVDD / VREF
				0111: 8/20AVDD / VREF
				1000: 9/20AVDD / VREF
				1001: 10/20AVDD / VREF
				1010: 11/20AVDD / VREF
				1011: 12/20AVDD / VREF
				1100: 13/20AVDD / VREF
				1101: 14/20AVDD / VREF
				1110: 15/20AVDD / VREF
				1111: 16/20AVDD / VREF

13.4.4 比较器轮询寄存器 (COMPx_POLL)(x=4, 5)

地址偏移: 0x1C, 0x20 复位值: 0x0000 0000

Reserved

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserved				POUT		Res.		PERIOD		Res.	FIXN	POLL _CH	POLL _EN
					r	r	r		rw	rw	rw		rw	rw	rw

Bit	Field	Type	Reset	Description
31 : 11	Reserved			始终读为0。
10:8	POUT	r	0x00	轮询通道输出 (Polling output)
				只读,反映轮询通道输出状态。POUT[0] 对应通道 1,
				POUT[1] 对应通道 2, POUT[2] 对应通道 3。
				1: 高输出 (同相输入高于反相输入)
				0: 低输出 (同相输入低于反相输入)
7	Reserved			始终读为 0 。

Bit	Field	Туре	Reset	Description					
6:4	PERIOD	rw	0x00	轮询等待周期 (polling wait cycle)					
				每 n 个 PCLK2 周期切换到下一个轮询通道。					
				111: 128 个时钟周期					
				110: 64 个时钟周期					
				101: 32 个时钟周期					
				100: 16 个时钟周期					
				011:8 个时钟周期					
				010: 4 个时钟周期					
				001: 2 个时钟周期					
				000: 1 个时钟周期					
3	Reserved			始终读为 0。					
2	FIXN	rw	0x00	轮询通道反相输入端固定 (Polling inverting input fix)					
				1:轮询通道反相输入固定。由 CSR 寄存器 INM_SEL 决					
				定。					
				0: 轮询通道反相输入不固定。与 INP 通道同时变化,此时					
				INM_SEL 无效。					
1	POLL_CH	rw	0x00	比较器轮询通道 (Comparator polling channel)					
				1:轮询通道 1/2/3。					
				0: 轮询通道 1/2。					
				注:此时 INP_SEL 无效。					
0	POLL_EN	rw	0x00	比较器轮询模式使能 (Comparator polling enable)					
				1: 比较器轮询模式使能。					
				0: 比较器轮询模式禁止。					

14

运算放大器 (OPAMP)

运算放大器 (OPAMP)

14.1 运算放大器简介

芯片内嵌四个运算放大器,每个运算放大器的输入输出都连接到 I/O ,通过共享 I/O 可以与 ADC ,比较器相连。

14.2 运算放大器主要特征

- 轨对轨输入/输出
- 输出连接到 I/O 上

14.3 运算放大器功能描述

14.3.1 时钟

运算放大器时钟控制器提供的时钟与 PCLK2 同步 (APB2 时钟)。

14.3.2 运算放大器寄存器描述

表 39. OPAMP 寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x10	OPAMP_CSR	运算放大控制寄存器	0x00000000	小节 14.3.3

14.3.3 OPAMP_CSR

偏移地址: 0x10

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			_				OPA MP4				_				OPA
	Reserved										Reser	/ed			MP3
							_EN								_EN
							rw								rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							OPA								OPA
			Reserv	ed			MP2				Reserv	/ed			MP1
							_EN								_EN
							rw								rw

Bit	Field	Туре	Reset	Description
31 : 25	Reserved			始终读为0。
24	OPAMP4_EN	rw	0x00	运算放大器 4 使能 (operational amplifier four enable)
				1: 运算放大器 4 使能。
				0:运算放大器 4 禁止。
23 : 17	Reserved			始终读为 0。
16	OPAMP3_EN	rw	0x00	运算放大器 3 使能 (operational amplifier three enable)
				1: 运算放大器 3 使能。
				0:运算放大器 3 禁止。
15 : 9	Reserved			始终读为 0。
8	OPAMP2_EN	rw	0x00	运算放大器 2 使能 (operational amplifier two enable)
				1:运算放大器 2 使能。
				0:运算放大器 2 禁止。
7:1	Reserved			始终读为 0。
0	OPAMP1_EN	rw	0x00	运算放大器 1 使能 (operational amplifier one enable)
				1:运算放大器 1 使能。
				0:运算放大器 1 禁止。

15

高级控制定时器 (TIM1/8)

高级控制定时器 (TIM1/8)

15.1 TIM1/8 简介

高级控制定时器 (TIM1/8) 由一个 16 位的自动装载计数器组成,它由一个可编程的预分频器驱动。

它适合多种用途,包含测量输入信号的脉冲宽度 (输入捕获),或者产生输出波形 (输出比较、PWM、嵌入死区时间的互补 PWM 等)。

使用定时器预分频器和 RCC 时钟控制预分频器,可以实现脉冲宽度和波形周期从几个微秒到几个毫秒的调节。

高级控制定时器 (TIM1/8) 和通用定时器 (TIMx) 是完全独立的,它们不共享任何资源。它们可以同步操作,具体描述参看通用定时器同步的章节。

15.2 主要特征

TIM1/8 定时器的功能包括:

- 16 位向上、向下、向上/下自动装载寄存器
- 16 位可编程 (可以实时修改) 预分频器, 计数器时钟频率的分频系数为 1~ 65536 之间的任意数值
- 多达 4 个独立通道
 - 输入捕获
 - 输出比较
 - PWM 生成 (边缘或中间对齐模式)
 - 单脉冲模式输出
- 死区时间可编程的互补输出
- 使用外部信号控制定时器和定时器互联的同步电路
- 允许在指定数目的计数器周期之后更新定时器寄存器的重复计数器
- 刹车输入信号可以将定时器输出信号置于复位状态或者一个已知状态
- 如下事件发生时产生中断/DMA:
 - 更新: 计数器向上溢出/向下溢出, 计数器初始化 (通过软件或者内部/外部触发)
 - 触发事件(计数器启动、停止、初始化或者由内部/外部触发计数)
 - 输入捕获
 - 输出比较
 - 刹车信号输入
- 支持针对定位的增量 (正交) 编码器和霍尔传感器电路
- 触发输入作为外部时钟或者按周期的电流管理

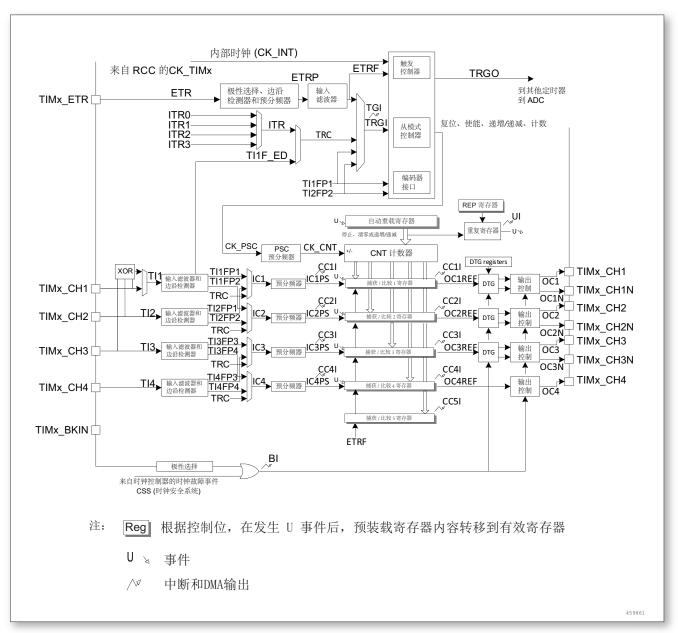


图 32. 高级控制定时器框图

15.3 功能描述

15.3.1 时基单元

可编程高级控制定时器的主要部分是一个 16 位计数器和与其相关的自动装载寄存器。这个计数器可以向上计数、向下计数或者向上向下双向计数。此计数器时钟由预分频器分频得到。

计数器、自动装载寄存器和预分频器寄存器可以由软件读写,即使计数器还在运行读写仍 然有效。

时基单元包含:

- 计数器寄存器 (TIMx CNT)
- 预分频器寄存器 (TIMx_PSC)

- 自动装载寄存器 (TIMx_ARR)
- 重复次数寄存器 (TIMx_RCR)

自动装载寄存器是预先装载的,写或读自动重装载寄存器将访问预装载寄存器。根据在 TIMx_CR1 寄存器中的自动装载预装载使能位 (ARPE) 的设置,预装载寄存器的内容被立即或在每次的更新事件 UEV 时传送到影子寄存器。当计数器达到溢出条件 (向下计数时的下溢条件) 并当 TIMx_CR1 寄存器中的 UDIS 位等于 0 时,产生更新事件。更新事件也可以由软件产生。随后会详细描述每一种配置下更新事件的产生。

计数器由预分频器的时钟输出 CK_CNT 驱动,仅当设置了计数器 TIMx_CR1 寄存器中的 计数器使能位 (CEN) 时, CK_CNT 才有效。(更多有关使能计数器的细节,请参见控制器的从模式描述)。

注:在设置了TIMx CR寄存器的CEN位的一个时钟周期后,计数器开始计数。

预分频器描述

预分频器可以将计数器的时钟频率按 1 到 65536 之间的任意值分频。它是基于一个 (TIMx_PSC 寄存器中的)16 位寄存器控制的 16 位计数器。因为这个控制寄存器带有缓冲器,它能够在 运行时被改变。新的预分频器的参数在下一次更新事件到来时被采用。

下面两个图分别给出了在预分频器运行时,更改计数器参数的例子。

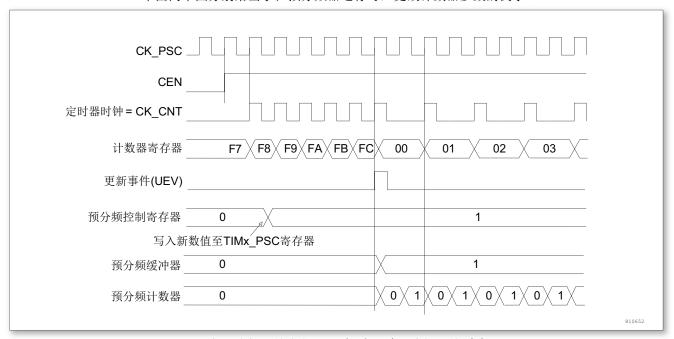


图 33. 当预分频器的参数从 1 变到 2 时, 计数器的时序图

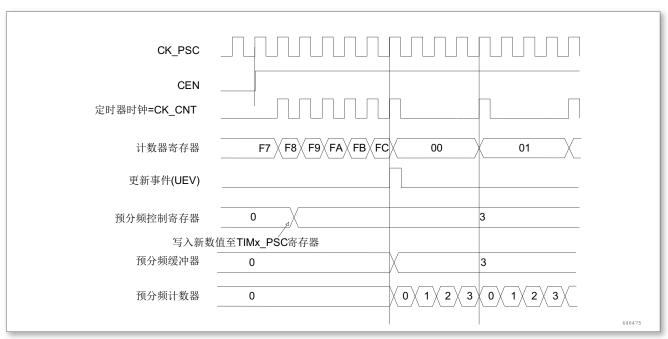


图 34. 当预分频器的参数从 1 变到 4 时, 计数器的时序图

15.3.2 计数模式

向上计数模式

在向上计数模式中,计数器从 0 计数到自动加载值 (TIMx_ARR 计数器的内容),然后重新 从 0 开始计数并且产生一个计数器溢出事件。

如果使用了重复计数器功能,在向上计数达到设置的重复计数次数 (TIMx_RCR) 时,产生更新事件 (UEV);否则每次计数器溢出时才产生更新事件。

在 TIMx_EGR 寄存器中设置 UG 位 (通过软件方式或者使用从模式控制器) 也同样可以产生一个更新事件。

设置 TIMx_CR1 寄存器中的 UDIS 位,可以禁止更新事件;这样可以避免在向预装载寄存器中写入新值时更新影子寄存器。在 UDIS 位被清 0 之前,将不产生更新事件。但是在应该产生更新事件时,计数器仍会被清 0,同时预分频器的计数也被请 0(但预分频器的数值不变)。此外,如果设置了 TIMx_CR1 寄存器中的 URS 位 (选择更新请求),设置 UG 位将产生一个更新事件 UEV,但硬件不设置 UIF 标志 (即不产生中断或 DMA 请求)。这是为了避免在捕获模式下清除计数器时,同时产生更新和捕获中断。

当发生一个更新事件时,所有的寄存器都被更新,硬件同时 (依据 URS 位) 设置更新标志位 (TIMx SR 寄存器中的 UIF 位)。

- 重复计数器被重新加载为 TIMx RCR 寄存器的内容。
- · 自动装载影子寄存器被重新置入预装载寄存器的值 (TIMx ARR)。
- 预分频器的缓冲区被置入预装载寄存器的值 (TIMx_PSC 寄存器的内容)。

下图给出一些例子,当 TIMx ARR = 0x36 时计数器在不同时钟频率下的动作。

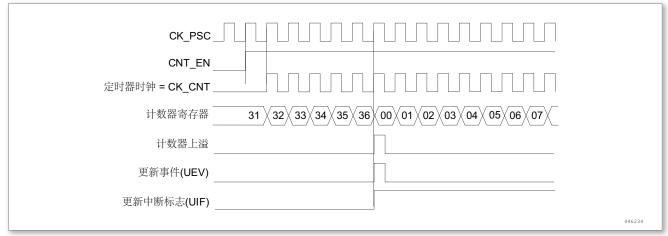


图 35. 计数器时序图,内部时钟分频因子为 1

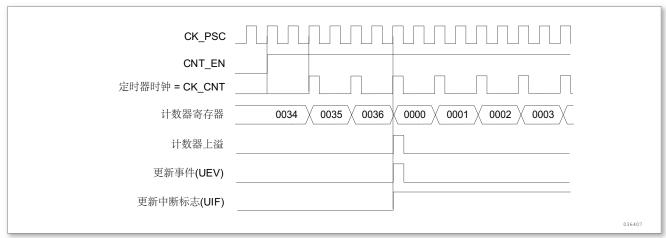


图 36. 计数器时序图,内部时钟分频因子为 2

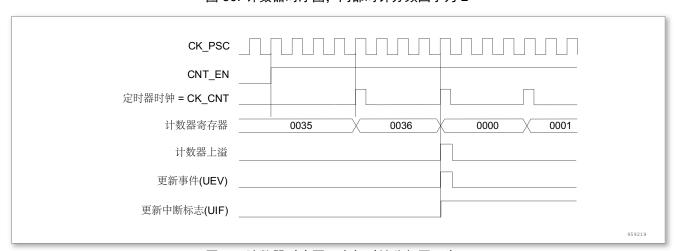


图 37. 计数器时序图,内部时钟分频因子为 4

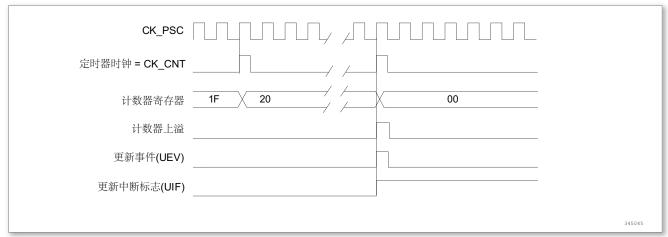


图 38. 计数器时序图,内部时钟分频因子为 N

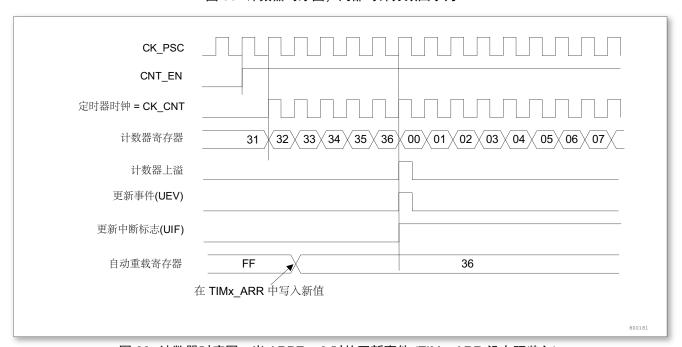


图 39. 计数器时序图, 当 ARPE = 0 时的更新事件 (TIMx_ARR 没有预装入)

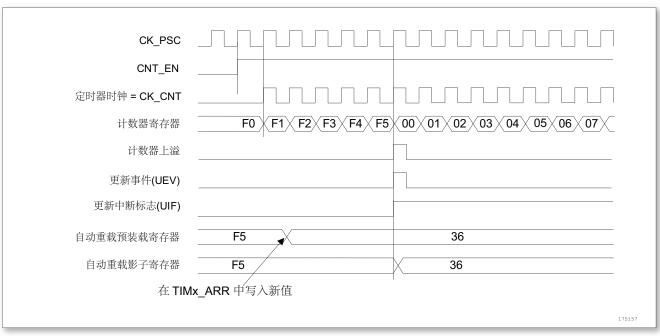


图 40. 计数器时序图, 当 ARPE = 1 时的更新事件 (预装入了 TIMx ARR)

向下计数模式

在向下模式中,计数器从自动装入的值 (TIMx_ARR 计数器的值) 开始向下计数到 0,然后从自动装入的值重新开始并且产生一个计数器向下溢出事件。

如果使用了重复计数器,当向下计数重复了重复计数寄存器 (TIMx_RCR) 中设定的次数后,将产生更新事件 (UEV),否则每次计数器下溢时才产生更新事件。

在 TIMx_EGR 寄存器中设置 UG 位 (通过软件方式或者使用从模式控制器) 也同样可以产生一个更新事件。

设置 TIMx_CR1 寄存器中的 UDIS 位可以禁止 UEV 事件。这样可以避免在向预装载寄存器中写入新值时更新影子寄存器。因此 UDIS 位被清为 0 之前不会产生更新事件。然而,计数器仍会从当前自动加载值重新开始计数,并且预分频器的计数器重新从 0 开始 (但预分频器的速率不能被修改)。

此外,如果设置了 TIMx_CR1 寄存器中的 URS 位 (选择更新请求),设置 UG 位将产生一个更新事件 UEV 但不设置 UIF 标志 (因此不产生中断和 DMA 请求),这是为了避免在发生捕获事件并清除计数器时,同时产生更新和捕获中断。

当发生更新事件时,所有的寄存器都被更新,并且(根据 URS 位的设置)更新标志位(TIMx_SR 寄存器中的 UIF 位)也被设置。

- 重复计数器被重置为 TIMx RCR 寄存器中的内容。
- 预分频器的缓存器被加载为预装载的值 (TIMx PSC 寄存器的值)。
- 当前的自动加载寄存器被更新为预装载值 (TIMx ARR 寄存器中的内容)。

注: 自动装载在计数器重载入之前被更新, 因此下一个周期将是预期的值。

以下是一些当 TIMx_ARR = 0x36 时,计数器在不同时钟频率下的操作例子。

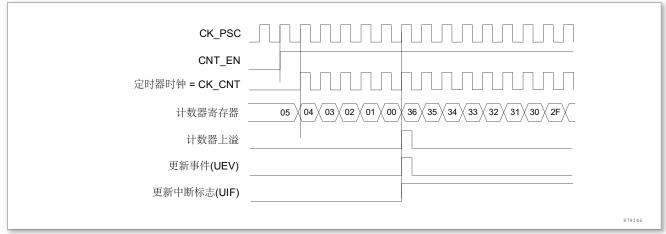


图 41. 计数器时序图,内部时钟分频因子为 1

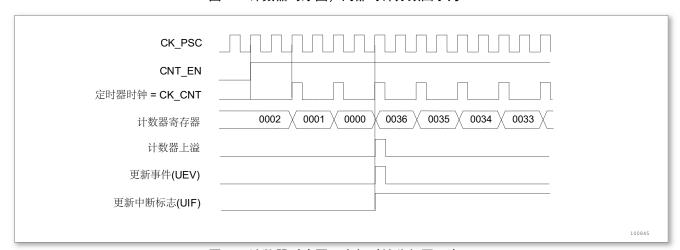


图 42. 计数器时序图,内部时钟分频因子为 2

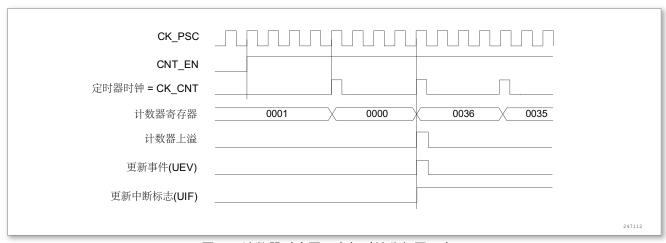


图 43. 计数器时序图,内部时钟分频因子为 4

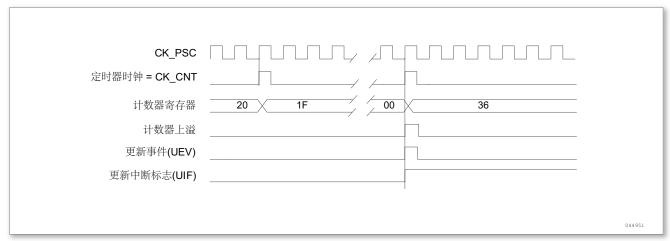


图 44. 计数器时序图,内部时钟分频因子为 N

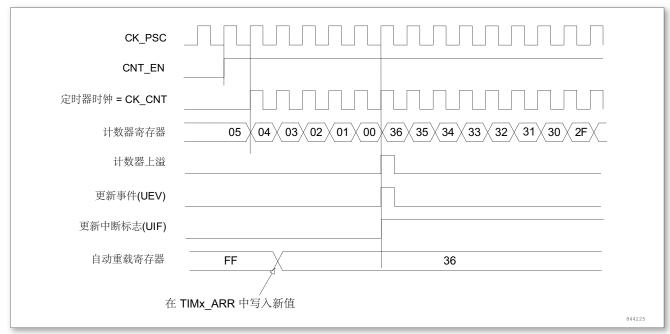


图 45. 计数器时序图, 当没有使用重复计数器时的更新事件

中央对齐模式 (向上/向下计数)

在中央对齐模式,计数器从 0 开始计数到自动加载的值 (TIMx_ARR 寄存器)- 1,产生一个计数器溢出事件,然后向下计数到 1 并且产生一个计数器下溢事件;然后再从 0 开始重新计数。

在此模式下,不能写入 TIMx_CR1 中的 DIR 方向位。它由硬件更新并指示当前的计数方向。

更新事件可以产生在每次计数上溢和每次计数下溢;也可以通过 (软件或者使用从模式控制器)设置 TIMx_EGR 寄存器中的 UG 位产生。此时,计数器重新从 0 开始计数,预分频器也重新从 0 开始计数。

设置 TIMx_CR1 寄存器中的 UDIS 位可以禁止 UEV 事件。这样可以避免在向预装载寄存器中写入新值时更新影子寄存器。因此 UDIS 位被清为 0 之前不会产生更新事件。然而,计数器仍会根据当前自动重加载的值,继续向上或向下计数。

此外,如果设置了 TIMx_CR1 寄存器中的 URS 位 (选择更新请求),设置 UG 位将产生一个更新事件 UEV 但不设置 UIF 标志 (因此不产生中断和 DMA 请求),这是为了避免在发生捕获事件并清除计数器时,同时产生更新和捕获中断。

当发生更新事件时,所有的寄存器都被更新,并且(根据 URS 位的设置)更新标志位(TIMx_SR 寄存器中的 UIF 位)也被设置。

- 重复计数器被重置为 TIMx RCR 寄存器中的内容。
- 预分频器的缓存器被加载为预装载 (TIMx PSC 寄存器)的值。
- 当前的自动加载寄存器被更新为预装载值 (TIMx ARR 寄存器中的内容)。

注:如果因为计数器溢出而产生更新,自动重装载将在计数器重载入之前被更新,因此下一个周期将是预期的值(计数器被装载为新的值)。

以下是一些计数器在不同时钟频率下的操作的例子:

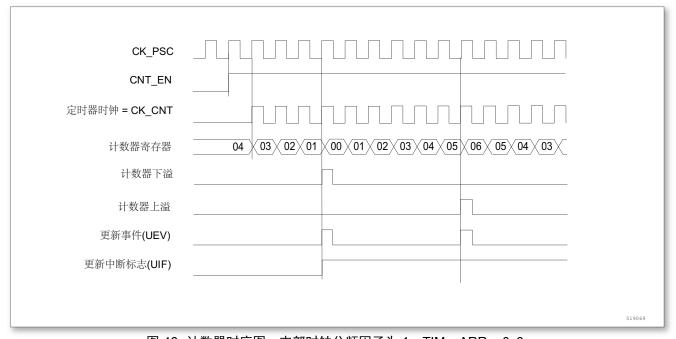


图 46. 计数器时序图,内部时钟分频因子为 1,TIMx_ARR = 0x6

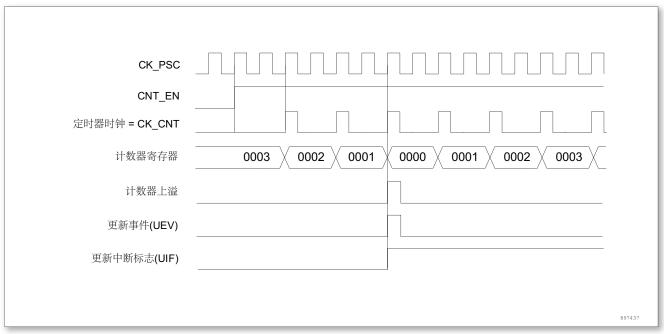


图 47. 计数器时序图,内部时钟分频因子为 2

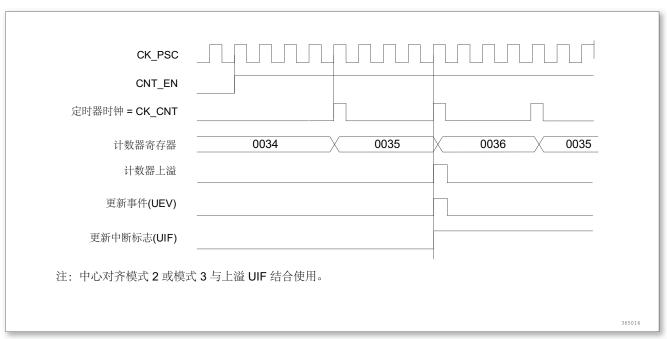


图 48. 计数器时序图,内部时钟分频因子为 4, TIMx_ARR = 0x36

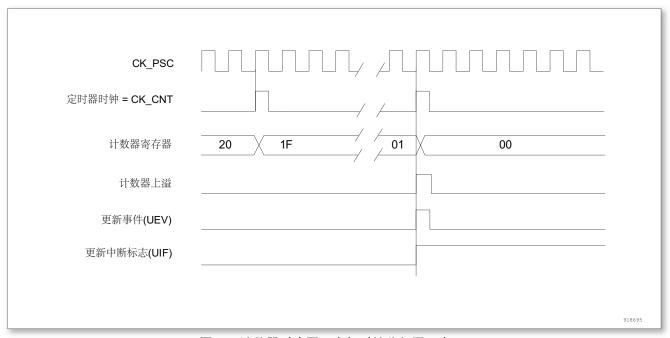


图 49. 计数器时序图,内部时钟分频因子为 N

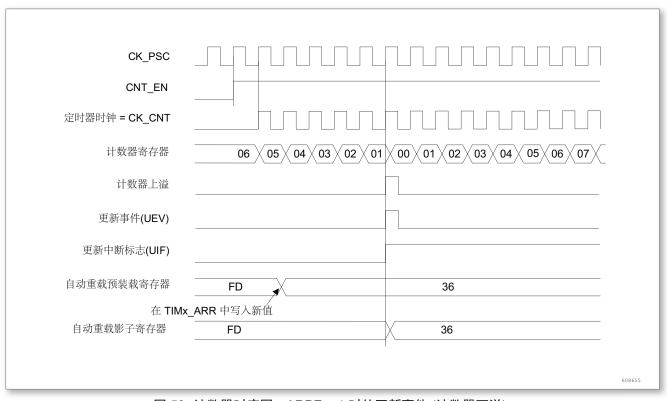


图 50. 计数器时序图, ARPE = 1 时的更新事件 (计数器下溢)

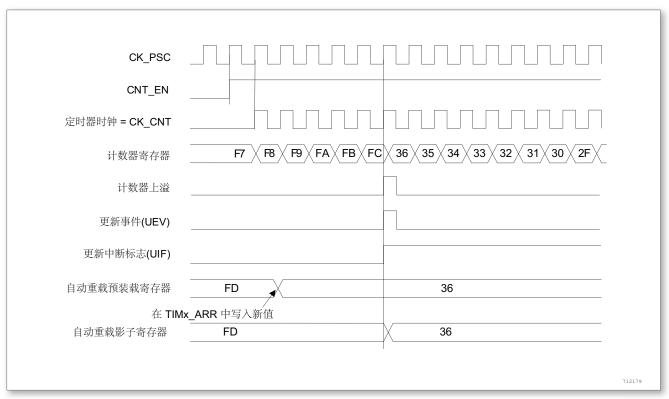


图 51. 计数器时序图, ARPE = 1 时的更新事件 (计数器溢出)

15.3.3 重复计数器

'时基单元'解释了计数器上溢/下溢时更新事件 (UEV) 是如何产生的,然而事实上它只能在重复计数达到 0 的时候产生。这个特性对产生 PWM 信号非常有用。

这意味着在每 N 次计数上溢或下溢时,数据从预装载寄存器传输到影子寄存器 (TIMx_ARR 自动重载入寄存器,TIMx_PSC 预装载寄存器,还有在比较模式下的捕获/比较寄存器 TIMx_CCRx), N 是

TIMx_RCR 重复计数寄存器中的值。

重复计数器在下述任一条件成立时递减:

- 向上计数模式下每次计数器溢出时,
- 向下计数模式下每次计数器下溢时,
- 中央对齐模式下每次上溢和每次下溢时。虽然这样限制了 PWM 的最大循环周期为 128, 但它能够在每个 PWM 周期 2 次更新占空比。在中央对齐模式下,因为波形是对称的,如 果每个 PWM 周期中仅刷新一次比较寄存器,则最大的分辨率为 2xTck。

重复计数器是自动加载的,重复速率是由 TIMx_RCR 寄存器的值定义 (参看图 52)。当更新事件由软件产生 (通过设置 TIMx_EGR 中的 UG 位) 或者通过硬件的从模式控制器产生,则无论重复计数器的值是多少,立即发生更新事件,并且 TIMx_RCR 寄存器中的内容被重载入到重复计数器。

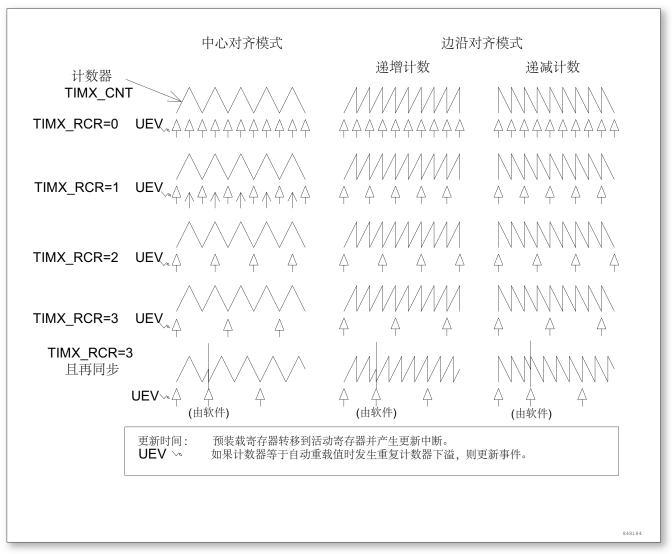


图 52. 不同模式下更新速率的例子,及 TIMx_RCR 的寄存器设置

15.3.4 时钟选择

计数器时钟可由下列时钟源提供:

- 内部时钟 (CK INT)。
- 外部时钟模式 1: 外部输入脚 (Tlx)。
- 外部时钟模式 2: 外部触发输入 (ETR)。
- 内部触发输入 (ITRx): 使用一个定时器作为另一个定时器的预分频器,如可以配置一个定时器 Timer1 而作为另一个定时器 Timer2 的预分频器。

内部时钟源 (CK INT)

如果禁止了从模式控制器 (SMS = 000),则 CEN、DIR(TIMx_CR1 寄存器) 和 UG 位 (TIMx_EGR 寄存器) 是事实上的控制位,并且只能被软件修改 (UG 位仍被自动清除)。当 CEN 位被写成 1 时,预分频器的时钟由内部时钟 CK INT 提供。

下图显示了控制电路和向上计数器在一般模式下,不带预分频器时的操作。

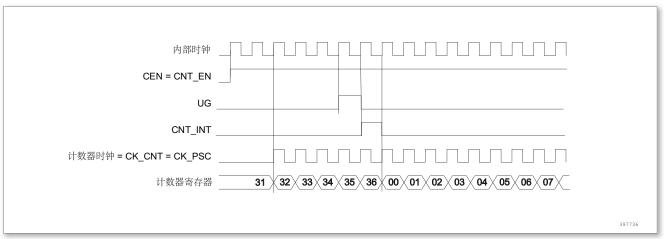


图 53. 一般模式下的控制电路,内部时钟分频因子为 1

外部时钟源模式 1

当 TIMx_SMCR 寄存器的 SMS = 111 时,此模式被选中。计数器可以在选定输入端的每个上升沿或下降沿计数。

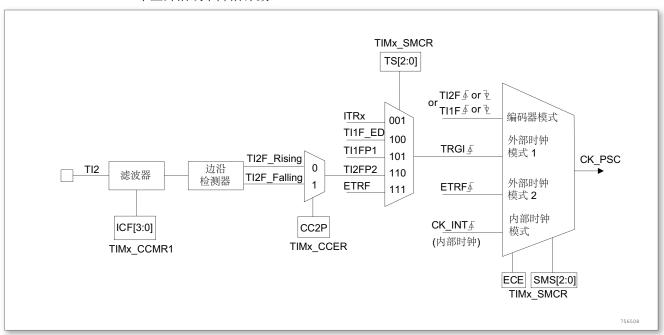


图 54. TI2 外部时钟连接例子

例如,要配置向上计数器在 T12 输入端的上升沿计数,使用下列步骤:

- 1. 配置 TIMx CCMR1 寄存器 CC2S = 01, 配置通道 2 检测 TI2 输入的上升沿。
- 2. 配置 TIMx_CCMR1 寄存器的 IC2F[3: 0], 选择输入滤波器带宽 (如果不需要滤波器, 保持 IC2F = 0000)。
- 3. 配置 TIMx_CCER 寄存器的 CC2P = 0,选定上升沿极性。
- 4. 配置 TIMx_SMCR 寄存器的 SMS = 111,选择定时器外部时钟模式 1。
- 5. 配置 TIMx_SMCR 寄存器中的 TS = 110,选定 TI2 作为触发输入源。
- 6. 设置 TIMx CR1 寄存器的 CEN = 1, 启动计数器。

注:捕获预分频器不用作触发,所以不需要对它进行配置。当上升沿出现在 TI2, 计数器计数一次,且 TIF 标志被设置。在 TI2 的上升沿和计数器实际时钟之间的延时取决于在 TI2 输入端的重新同步

电路。

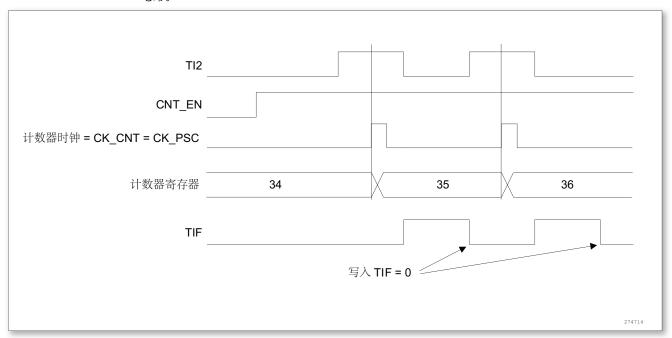


图 55. 外部时钟模式 1 下的控制电路

外部时钟源模式 2

选定此模式的方法为: 令 TIMx_SMCR 寄存器中的 ECE = 1。 计数器能够在外部触发 ETR 的每一个上升沿或下降沿计数。

下图是外部触发输入的总体框图:

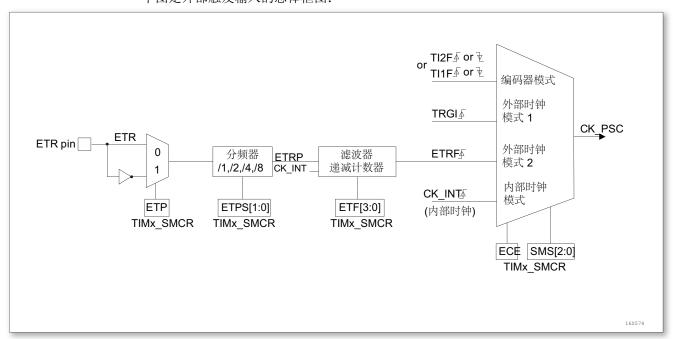


图 56. 外部触发输入框图

例如,要配置在 ETR 下每 2 个上升沿计数一次的向上计数器,使用下列步骤:

- 本例中不需要滤波器,置 TIMx_SMCR 寄存器中的 ETF[3: 0] = 0000
- 设置预分频器,置 TIMx_SMCR 寄存器中的 ETPS[1: 0] = 01

- 选择 ETR 的上升沿检测,置 TIMx_SMCR 寄存器中的 ETP = 0
- 开启外部时钟模式 2, 写 TIMx_SMCR 寄存器中的 ECE = 1
- 启动计数器,写 TIMx_CR1 寄存器中的 CEN = 1

计数器在每2个ETR上升沿计数一次。

在 ETR 的上升沿和计数器实际时钟之间的延时取决于在 ETRP 信号端的重新同步电路

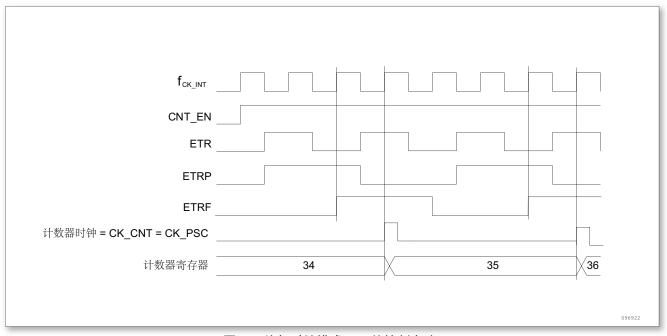


图 57. 外部时钟模式 2 下的控制电路

15.3.5 捕获/比较通道

每一个捕获/比较通道都是围绕着一个捕获/比较寄存器 (包含影子寄存器),包括捕获的输入部分 (数字滤波、多路复用和预分频器),和输出部分 (比较器和输出控制)。

图 58至图 61是一个捕获/比较通道概览。

输入部分对相应的 TIx 输入信号采样,并产生一个滤波后的信号 TIxF。然后,一个带极性选择的边缘监测器产生一个信号 (TIxFPx),它可以作为从模式控制器的输入触发或者作为捕获控制。该信号通过预分频进入捕获寄存器 (ICxPS)。

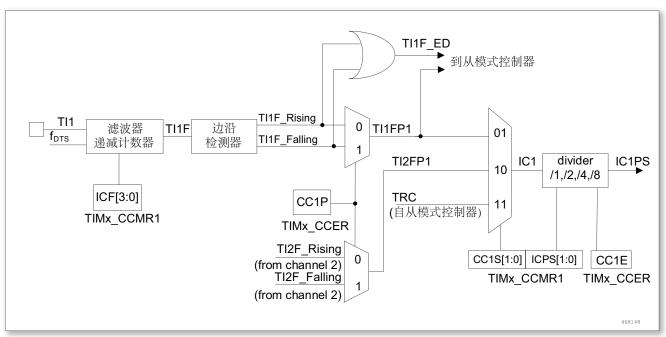


图 58. 捕获/比较通道 (如:通道 1 输入部分)

图 59. 捕获/比较通道 1 的主电路

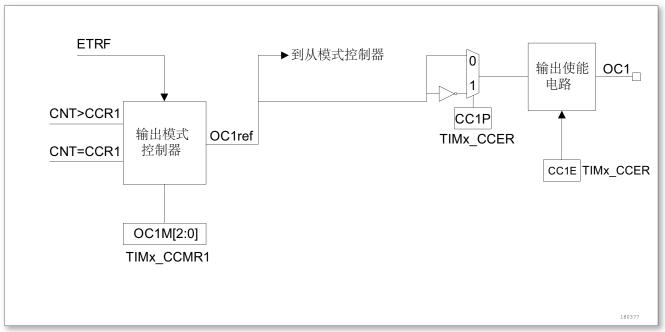


图 60. 捕获/比较通道的输出部分 (通道 1 至 3)

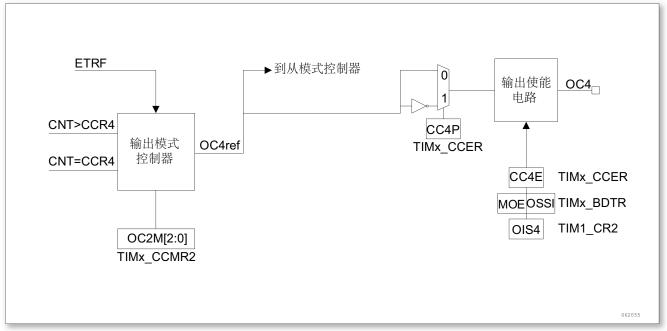


图 61. 捕获/比较通道的输出部分 (通道 4)

捕获/比较模块由一个预装载寄存器和一个影子寄存器组成。读写过程仅操作预装载寄存器。在捕获模式下,捕获发生在影子寄存器上,然后再复制到预装载寄存器中。

在比较模式下,预装载寄存器的内容被复制到影子寄存器中,然后影子寄存器的内容和计数器进行比较。

15.3.6 输入捕获模式

在输入捕获模式下,当检测到 ICx 信号上相应的边沿后,计数器的当前值被锁存到捕获/比较寄存器 (TIMx_CCRx)中。当发生捕获事件时,相应的 CCxIF 标志 (TIMx_SR 寄存器)被置 1,如果开放了中断或者 DMA 操作,则将产生中断或者 DMA 请求。如果发生捕获事件

时 CCxIF 标志已经为高,那么重复捕获标志 CCxOF (TIMx_SR 寄存器) 被置 1。写 CCxIF = 0 可清除 CCxIF,或读取存储在 TIMx_CCRx 寄存器中的捕获数据也可清除 CCxIF。写 CCxOF = 0 可清除 CCxOF。

以下例子说明如何在 TI1 输入的上升沿时捕获计数器的值到 TIMx_CCR1 寄存器中,步骤如下:

- 选择有效输入端: TIMx_CCR1 必须连接到 TI1 输入,所以写入 TIMx_CCMR1 寄存器中的 CC1S = 01,当 CC1S 不为 00 时,通道被配置为输入,并且 TIMx_CCR1 寄存器变为只读。
- 根据输入信号的特点,配置输入滤波器为所需的带宽 (即输入为 Tlx 时,输入滤波器控制位是 TlMx_CCMRx 寄存器中的 lCxF 位)。假设输入信号在最多 5 个时钟周期的时间内抖动,我们须配置滤波器的带宽长于 5 个时钟周期;因此我们可以 (以 fDTS 频率)连续采样 8 次,以确认在 Tl1 上一次真实的边沿变换,即在 TlMx_CCMR1 寄存器中写入 lC1F = 0011。
- 选择 TI1 通道的有效转换边沿,在 TIMx CCER 寄存器中写入 CC1P = 0 (上升沿)。
- 配置输入预分频器。在本例中,我们希望捕获发生在每一个有效的电平转换时刻,因此 预分频器被禁止 (写 TIMx_CCMR1 寄存器的 IC1PS = 00)。
- 设置 TIMx CCER 寄存器的 CC1E = 1,允许捕获计数器的值到捕获寄存器中。
- 如果需要,通过设置 TIMx_DIER 寄存器中的 CC1IE 位允许相关中断请求,通过设置 TIMx_DIER 寄存器中的 CC1DE 位允许 DMA 请求。

当发生一个输入捕获时:

- 当产生有效的电平转换时,计数器的值被传送到 TIMx CCR1 寄存器。
- C1IF 标志被设置 (中断标志)。当发生至少 2 个连续的捕获时, 而 CC1IF 未曾被清除, CC1OF 也被置 1。
- 如设置了 CC1IE 位,则会产生一个中断。
- 如设置了 CC1DE 位,则还会产生一个 DMA 请求。

为了处理捕获溢出,建议在读出捕获溢出标志之前读取数据,这是为了避免丢失在读出捕获溢出标志之后和读取数据之前可能产生的捕获溢出信息。

注:设置 TIMx EGR 寄存器中相应的 CCxG 位,可以通过软件产生输入捕获中断和/或 DMA 请求。

15.3.7 PWM 输入模式

该模式是输入捕获模式的一个特例,除下列区别外,操作与输入捕获模式相同:

- 两个 ICx 信号被映射至同一个 TIx 输入。
- 这 2 个 ICx 信号为边沿有效,但是极性相反。
- 其中一个 TixFP 信号被作为触发输入信号,而从模式控制器被配置成复位模式。例如,你需要测量输入到 TI1 上的 PWM 信号的长度 (TIMx_CCR1 寄存器) 和占空比 (TIMx_CCR2 寄存器),具体步骤如下 (取决于 CK_INT 的频率和预分频器的值)
- 选择 TIMx_CCR1 的有效输入: 置 TIMx_CCMR1 寄存器的 CC1S = 01(选中 TI1)。
- 选择 TI1FP1 的有效极性 (用来捕获数据到 TIMx_CCR1 中和清除计数器): 置 CC1P = 0(上升沿有效)。
- 选择 TIMx_CCR2 的有效输入: 置 TIMx_CCMR1 寄存器的 CC2S = 10(选中 TI1)。
- 选择 TI1FP2 的有效极性 (捕获数据到 TIMx CCR2): 置 CC2P = 1(下降沿有效)。
- 选择有效的触发输入信号: 置 TIMx_SMCR 寄存器中的 TS = 101(选择 TI1FP1)。

- 配置从模式控制器为复位模式:置 TIMx_SMCR 中的 SMS = 100。
- 使能捕获: 置 TIMx_CCER 寄存器中 CC1E = 1 且 CC2E = 1。

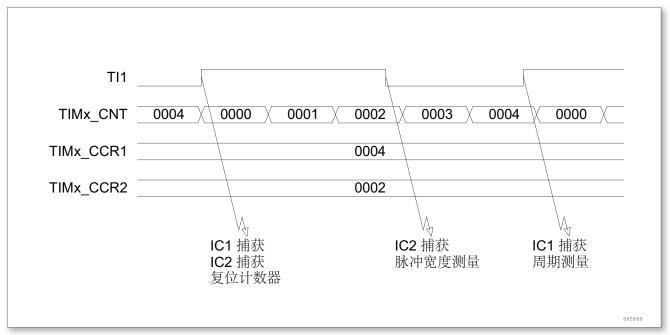


图 62. PWM 输入模式时序

因为只有 TI1FP1 和 TI2FP2 连到了从模式控制器,所以 PWM 输入模式只能使用 TIMx_CH1/TIMx_CH2 信号。

15.3.8 强制输出模式

在输出模式 (TIMx_CCMRx 寄存器中 CCxS = 00) 下,输出比较信号 (OCxREF 和相应的 OCx/OCxN) 能够直接由软件强置为有效或无效状态,而不依赖于输出比较寄存器和计数器间的比较结果。

置 TIMx_CCMRx 寄存器中相应的 OCxM = 101,即可强置输出比较信号 (OCxREF/OCx)为有效状态。这样 OCxREF 被强置为高电平 (OCxREF 始终为高电平有效),同时 OCx 得到 CCxP 极性相反的信号。

例如: CCxP = 0(OCx 高电平有效),则 OCx 被强置为高电平。

置 TIMx CCMRx 寄存器中的 OCxM = 100,可强置 OCxREF 信号为低。

该模式下,在 TIMx_CCRx 影子寄存器和计数器之间的比较仍然在进行,相应的标志也会被修改。因此仍然会产生相应的中断和 DMA 请求。这将会在下面的输出比较模式一节中介绍。

15.3.9 输出比较模式

此项功能是用来控制一个输出波形或者指示何时一段给定的时间已经到时。

当计数器与捕获/比较寄存器的内容相同时,输出比较功能做如下操作:

• 将输出比较模式 (TIMx_CCMRx 寄存器中的 OCxM 位) 和输出极性 (TIMx_CCER 寄存器中的 CCxP 位) 定义的值输出到对应的管脚上。在比较匹配时,输出管脚可以保持它的电平 (OCxM = 000)、被设置成有效电平 (OCxM = 001)、被设置成无有效电平 (OCxM = 010) 或进行翻转 (OCxM = 011)。

- 设置中断状态寄存器中的标志位 (TIMx_SR 寄存器中的 CCxIF 位)。
- 若设置了相应的中断屏蔽 (TIMx_DIER 寄存器中的 CCxIE 位),则产生一个中断。
- 若设置了相应的使能位 (TIMx_DIER 寄存器中的 CCxDE 位, TIMx_CR2 寄存器中的 CCDS 位选择 DMA 请求功能),则产生一个 DMA 请求。

TIMx_CCMRx 中的 OCxPE 位选择 TIMx_CCRx 寄存器是否需要使用预装载寄存器。

在输出比较模式下,更新事件 UEV 对 OCxREF 和 OCx 输出没有影响。

同步的精度可以达到计数器的一个计数周期。输出比较模式 (在单脉冲模式下) 也能用来输出一个单脉冲。

输出比较模式的配置步骤:

- 选择计数器时钟 (内部,外部,预分频器)
- 将相应的数据写入 TIMx_ARR 和 TIMx_CCRx 寄存器中
- 如果要产生一个中断请求,设置 CCxIE 位
- 选择输出模式,例如:
 - 要求计数器与 CCRx 匹配时翻转 OCx 的输出管脚,设置 OCxM = 011
 - 置 OCxPE = 0 禁用预装载寄存器
 - 置 CCxP = 0 选择极性为高电平有效
 - 置 CCxE = 1 使能输出
- 设置 TIMx CR1 寄存器的 CEN 位启动计数器

TIMx_CCRx 寄存器能够在任何时候通过软件进行更新以控制输出波形,条件是未使用预装载寄存器 (OCxPE = '0',否则 TIMx_CCRx 的影子寄存器只能在发生下一次更新事件时被更新)。下图给出了一个例子。

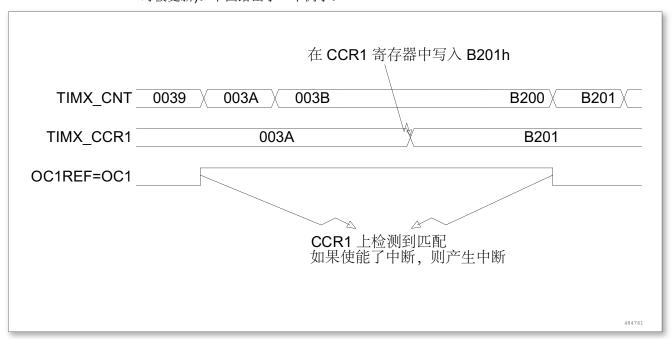


图 63. 输出比较模式,翻转 OC1

15.3.10 PWM 模式

脉冲宽度调制模式可以产生一个由 TIMx_ARR 寄存器确定频率、由 TIMx_CCRx 寄存器确定占空比的信号。

在 TIMx_CCMRx 寄存器中的 OCxM 位写入'110'(PWM 模式 1)或'111'(PWM 模式 2),能够独立地设置每个 OCx 输出通道产生一路 PWM。必须通过设置 TIMx_CCMRx 寄存器的 OCxPE 位使能相应的预装载寄存器,最后还要设置 TIMx_CR1 寄存器的 ARPE 位使能自动重装载的预装载寄存器 (在向上计数或中心对称模式中)。

因为仅当发生一个更新事件的时候,预装载寄存器才能被传送到影子寄存器,因此在计数器开始计数之前,必须通过设置 TIMx_EGR 寄存器中的 UG 位来初始化所有的寄存器。

OCx 的极性可以通过软件在 TIMx_CCER 寄存器中的 CCxP 位设置,它可以设置为高电平有效或低电平有效。OCx 的输出使能通过 (TIMx_CCER 和 TIMx_BDTR 寄存器中) CCxE、CCxNE、MO E、OSSI 和 OSSR 位的组合控制。详见 TIMx_CCER 寄存器的描述。

在 PWM 模式 (模式 1 或模式 2)下,TIMx_CNT 和 TIMx_CCRx 始终在进行比较,(依据计数器的计数方向)以确定是否符合 TIMx_CCRx ≤ TIMx_CNT 或者 TIMx_CNT ≤ TIMx_CCRx。根据 TIMx_CR1 寄存器中 CMS 位的状态,定时器能够产生边沿对齐的 PWM 信号或中央对齐的 PWM 信号。

PWM 边沿对齐模式

向上计数配置

当 TIMx CR1 寄存器中的 DIR 位为低的时候执行向上计数。参看小节 15.3.2。

下面是一个PWM模式1的例子。当TIMx_CNT < TIMx_CCRx 时,PWM参考信号OCxREF为高,否则低。如果TIMx_CCRx 中的比较值大于自动重装载值(TIMx_ARR),则OCxREF保持为'1'。如果比较值为0,则OCxREF保持为'0'。图 64为TIMx_ARR = 8时边沿对齐的PWM波形实例。

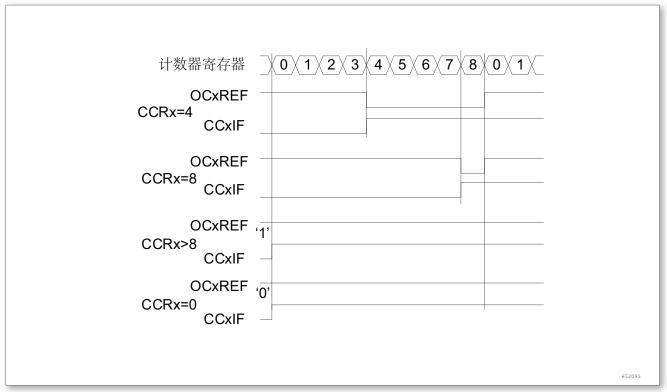


图 64. 边沿对齐的 PWM 波形 (ARR = 8)

向下计数的配置

当 TIMx CR1 寄存器的 DIR 位为高时执行向下计数。参看小节 15.3.2。

在 PWM 模式 1,当 TIMx_CNT > TIMx_CCRx 时参考信号 OCxREF 为低,否则为高。如果 TIMx_CCRx 中的比较值大于 TIMx_ARR 中的自动重装载值,则 OCxREF 保持为'1'。该模式下不能产生 0%的 PWM 波形。

PWM 中央对齐模式

当 TIMx_CR1 寄存器中的 CMS 位不为'00'时为中央对齐模式 (所有其他的配置对 OCxREF/OCx 信号都有相同的作用)。根据不同的 CMS 位的设置,比较标志可以在计数器向上计数时被置 1、在计数器向下计数时被置 1、或在计数器向上和向下计数时被置 '1'。TIMx_CR1 寄存器中的计数方向位 (DIR) 由硬件更新,不要用软件修改它。参看小节 15.3.2的中央对齐模式。

图 65给出了一些中央对齐的 PWM 波形的例子

- TIMx_ARR = 8
- PWM 模式 1
- TIMx_CR1 寄存器的 CMS = 01,在中央对齐模式 1 下,当计数器向下计数时设置比较标志

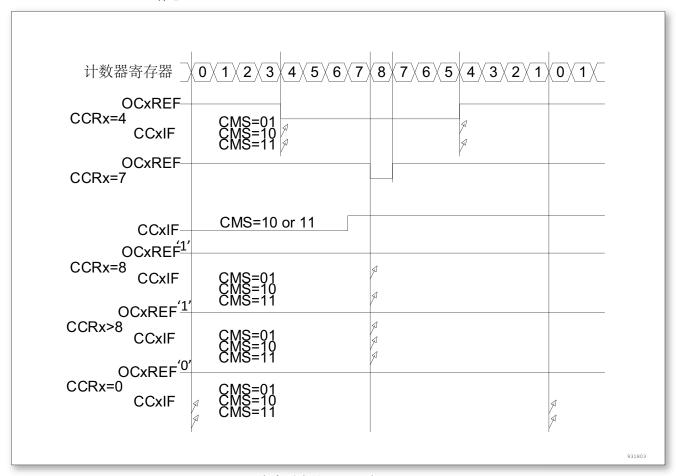


图 65. 中央对齐的 PWM 波形 (APR = 8)

使用中央对齐模式的提示:

• 进入中央对齐模式时,使用当前的上/下计数配置:这就意味着计数器向上还是向下计数

取决于 TIMx_CR1 寄存器中 DIR 位的当前值。此外,软件不能同时修改 DIR 和 CMS 位。

- 不推荐当运行在中央对齐模式时改写计数器,因为会产生不可预知的结果。特别地:
 - 如果写入计数器的值大于自动重加载的值 (TIMx_CNT > TIMx_ARR),则方向不会被更新
 - 例如,如果计数器正在向上计数,它就会继续向上计数
 - 如果将 0 或者 TIMx_ARR 的值写入计数器,方向被更新,但不产生更新事件 UEV
- 使用中央对齐模式最保险的方法,就是在启动计数器之前产生一个软件更新(设置 TIMx_EGR 位中的 UG 位),不要在计数进行过程中修改计数器的值。

15.3.11 互补输出和死区插入

高级控制定时器 (TIM1/8) 能够输出两路互补信号,并且能够管理输出的瞬时关断和接通。 这段时间通常被称为死区,用户应该根据连接的输出器件和它们的特性 (电平转换的延时、 电源开关的延时等) 来调整死区时间。

配置 TIMx_CCER 寄存器中的 CCxP 和 CCxNP 位,可以为每一个输出独立地选择极性 (主输出 OCx 或互补输出 OCxN)。

互补信号 OCx 和 OCxN 通过下列控制位的组合进行控制: TIMx_CCER 寄存器的 CCxE和 CCxNE 位, TIMx_BDTR 和 TIMx_CR2 寄存器中的 MOE、OISx、OISxN、OSSI和OSSR 位,详见表 43带刹车功能的互补输出通道 OCx 和 OCxN 的控制位。特别的是,在转换到 IDLE 状态时 (MOE 下降到 0) 死区被激活。

同时设置 CCxE 和 CCxNE 位将插入死区,如果存在刹车电路,则还要设置 MOE 位。每一个通道都有一个 10 位的死区发生器。参考信号 OCxREF 可以产生 2 路输出 OCx 和 OCxN。如果 OCx 和 OCxN 为高有效:

- OCx 输出信号与参考信号相同,只是它的上升沿相对于参考信号的上升沿有一个延迟。
- OCxN 输出信号与参考信号相反,只是它的上升沿相对于参考信号的下降沿有一个延迟。 如果延迟大于当前有效的输出宽度 (OCx 或者 OCxN),则不会产生相应的脉冲。

下列几张图显示了死区发生器的输出信号和当前参考信号 OCxREF 之间的关系。(假设 CCxP = 0、CCxNP = 0、MOE = 1、CCxE = 1 并且 CCxNE = 1)。

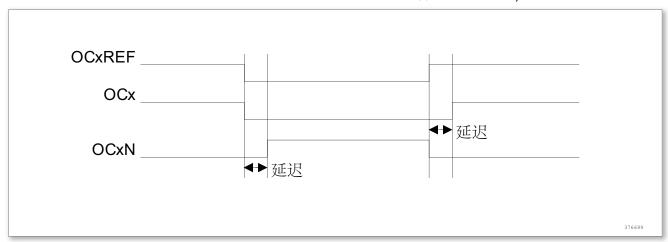


图 66. 带死区插入的互补输出

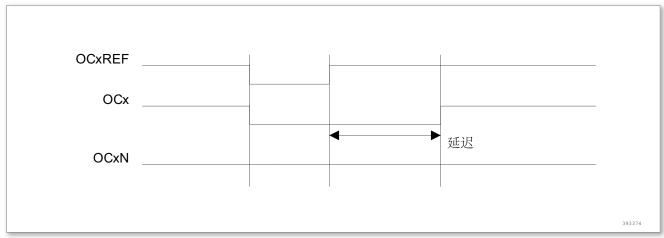


图 67. 死区波形延迟大于负脉冲

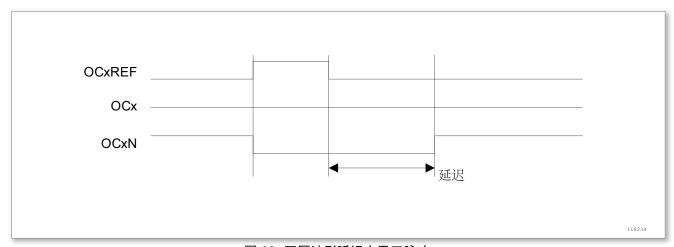


图 68. 死区波形延迟大于正脉冲

每一个通道的死区延时都是相同的,是由 TIMx_BDTR 寄存器中的 DTG 位编程配置。详见小节 15.4.18中的延时计算。

重定向 OCxREF 到 OCx 或 OCxN

在输出模式下(强置、输出比较或 PWM),通过配置 TIMx_CCER 寄存器的 CCxE 和 CCxNE 位, OCxREF 可以被重定向到 OCx 或者 OCxN 的输出。

这个功能可以在互补输出处于无效电平时,在某个输出上送出一个特殊的波形 (例如 PWM 或者静态有效电平)。另一个作用是,让两个输出同时处于无效电平,或处于有效电平和带死区的互补输出。

注: 当只使能 OCxN(CCxE = 0, CCxNE = 1) 时,它不会反相,当 OCxREF 有效时立即变高。例如,如果 CCxNP = 0,则 OCxN = OCxREF。另一方面,当 OCx 和 OCxN 都被使能时 (CCxE = CCxNE = 1),当 OCxREF 为高时 OCx 有效;而 OCxN 相反,当 OCxREF 低时 OCxN 变为有效。

15.3.12 使用刹车功能

当使用刹车功能时,依据相应的控制位 (TIMx_BDTR 寄存器中的 MOE、OSSI 和 OSSR 位,TIMx_CR2 寄存器中的 OISx 和 OISxN 位),输出使能信号和无效电平都会被修改。但 无论何时,OCx 和 OCxN 输出不能在同一时间同时处于有效电平上。详见寄存器表中带刹车功能的互补输出通道 OCx 和 OCxN 的控制位。

刹车源既可以是刹车输入管脚又可以是一个时钟失败事件。时钟失败事件由复位时钟控制 器中的时钟安全系统产生。

系统复位后,刹车电路被禁止,MOE 位为低。设置 TIMx_BDTR 寄存器中的 BKE 位可以使能刹车功能。刹车输入信号的极性可以通过配置同一个寄存器中的 BKP 位选择。BKE 和BKP 可以被同时修改。

因为 MOE 下降沿可以是异步的,在实际信号 (作用在输出端) 和同步控制位 (在 TIMx_BDTR 寄存器中) 之间设置了一个再同步电路。这个再同步电路会在异步信号和同步信号之间产生延迟。特别的,如果当它为低时写 MOE=1,则读出它之前必须先插入一个延时 (空指令)才能读到正确的值。这是因为写入的是异步信号而读的是同步信号。

当发生刹车时 (在刹车输入端出现选定的电平), 有下述动作:

- MOE 位被异步地清除,将输出置于无效状态、空闲状态或者复位状态 (由 OSSI 位选择)。 这个特性在 MCU 的振荡器关闭时依然有效。
- 当 MOE = 0 时,每一个输出通道输出的电平由 TIMx_CR2 寄存器中的 OISx 位决定。如果 OSSI = 0,则定时器释放使能输出,否则使能输出始终为高。
- 当使用互补输出时:
 - 输出首先被置于复位状态即无效的状态 (取决于极性)。这是异步操作,即使定时器没有时钟时,此功能也有效。
 - 如果定时器的时钟依然存在,死区生成器将会重新生效,在死区之后根据 OISx 和 OISxN 位指示的电平驱动输出端口。即使在这种情况下,OCx 和 OCxN 也不能被同时驱动到有效的电平。注,因为重新同步 MOE,死区时间比通常情况下长一些(大约2个CK TIM 的时钟周期)。
 - 如果 OSSI = 0,定时器释放使能输出,否则保持使能输出;或当 CCxE 与 CCxNE 之一变高时,使能输出变为高。
- 如果设置了 TIMx_DIER 寄存器中的 BIE 位,当刹车状态标志 (TIMx_SR 寄存器中的 BIF 位)为 '1'时,则产生一个中断。如果设置了 TIMx_DIER 寄存器中的 BDE 位,则产生一个 DMA 请求。
- 如果设置了 TIMx_BDTR 寄存器中的 AOE 位,在下一个更新事件 UEV 时 MOE 位被自动置位;例如,这可以用来进行整形。否则,MOE 始终保持低直到被再次置'1';此时,这个特性可以被用在安全方面,你可以把刹车输入连到电源驱动的报警输出、热敏传感器或者其他安全器件上。

注: 刹车输入为电平有效。所以, 当刹车输入有效时, 不能同时 (自动地或者通过软件) 设置 MOE。同时, 状态标志 BIF 不能被清除。

刹车由 BRK 输入产生,它的有效极性是可编程的,且由 TIMx_BDTR 寄存器中的 BKE 位开启。

除了刹车输入和输出管理,刹车电路中还实现了写保护以保证应用程序的安全。它允许用户冻结几个配置参数 (死区长度,OCx/OCxN 极性和被禁止的状态,OCxM 配置,刹车使能和极性)。用户可以通过 TIMx_BDTR 寄存器中的 LOCK 位,从三级保护中选择一种,参看小节 15.4.8。在 MCU 复位后 LOCK 位只能被修改一次。

下图显示响应刹车的输出实例:

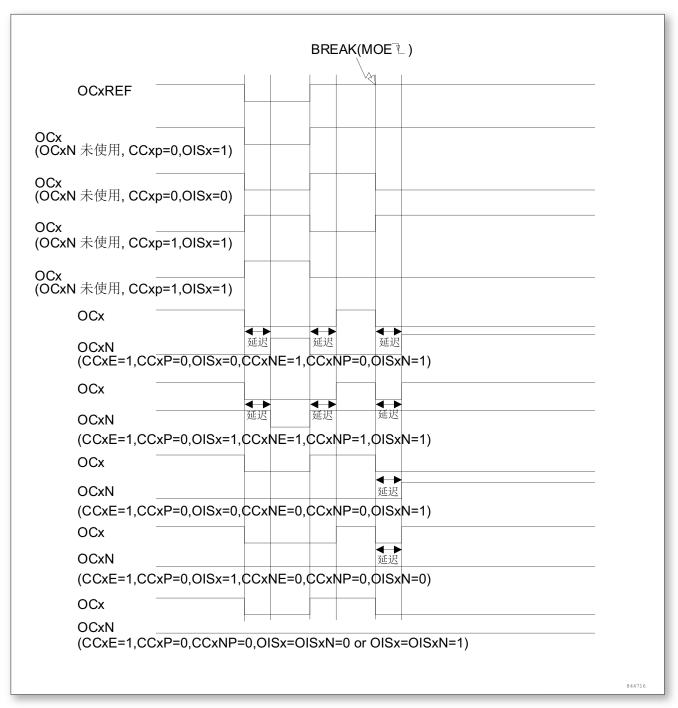


图 69. 响应刹车的输出

15.3.13 在外部事件时清除 OCxREF 信号

对于一个给定的通道,在 ocref_clr_int 输入端 (设置 TIMx_CCMRx 寄存器中对应的 OCxCE 位为'1')的高电平能够把 OCxREF 信号拉低,OCxREF 信号将保持为低直到发生下一次的 更新事件 UEV。通过配置 TIMx_SMCR 的 OCCS 位, ocref_clr_int 输入能在 OCREF_CLR 和 ETRF 之间选择。

该功能只能用于输出比较和 PWM 模式, 而不能用于强置模式。

例如,OCxREF 信号可以连到一个外部输入。这时,ETR 必须配置如下:

- 外部触发预分频器必须处于关闭: TIMx_SMCR 寄存器中的 ETPS[1: 0] = 00。
- 必须禁止外部时钟模式 2: TIMx_SMCR 寄存器中的 ECE = 0。
- 外部触发极性 (ETP) 和外部触发滤波器 (ETF) 可以根据需要配置。

下图显示了当 ETRF 输入变为高时,对应不同 OCxCE 的值,OCxREF 信号的动作。在这个例子中,定时器 TIMx 被置于 PWM 模式。

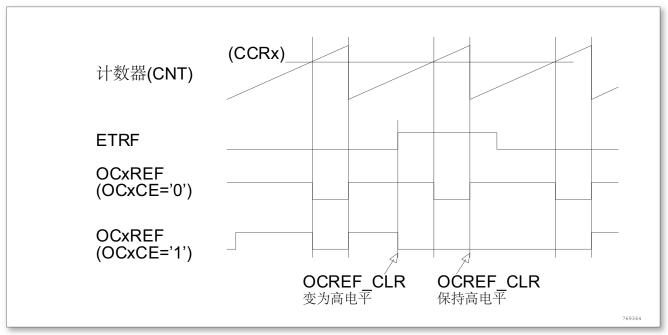


图 70. 清除 TIMx 的 OCxREF

15.3.14 产生六步 PWM 输出

当在一个通道上需要互补输出时,预装载位有 OCxM、CCxE 和 CCxNE。在发生 COM 换相事件时,这些预装载位被传送到影子寄存器位。这样你就可以预先设置好下一步骤配置,并在同一个时刻同时修更改所有通道的配置。COM 可以通过设置 TIMx_EGR 寄存器的 COM 位由软件产生,或在 TRGI 上升沿由硬件产生。

当发生 COM 事件时会设置一个标志 (TIMx_SR 寄存器中的 COMIF 位),这时如果已设置了 TIMx_DIER 寄存器的 COMIE 位,则产生一个中断;如果已设置了 TIMx_DIER 寄存器的 COMDE 位,则产生一个 DMA 请求。

下图显示当发生 COM 事件时,三种不同配置下 OCx 和 OCxN 输出。

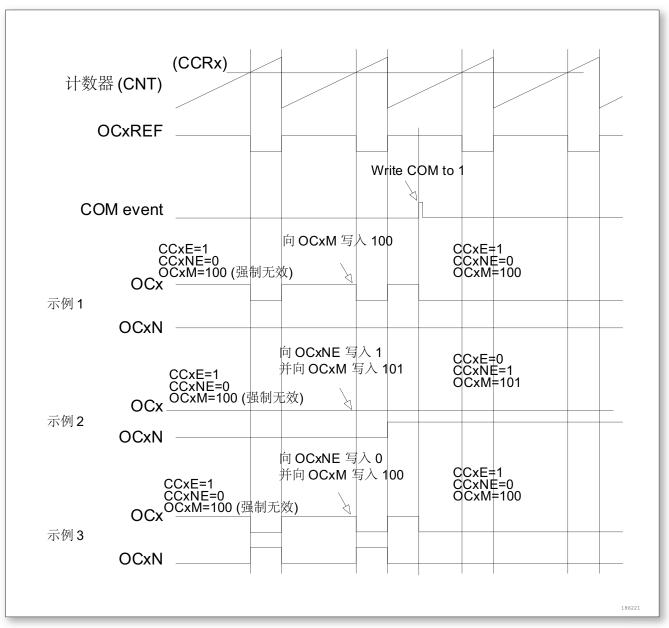


图 71. 产生六步 PWM, 使用 COM 的例子 (OSSR = 1)

15.3.15 单脉冲模式

单脉冲模式 (OPM) 是前述众多模式的一个特例。这种模式允许计数器响应一个激励,并在一个程序可控的延时之后产生一个脉宽可程序控制的脉冲。

可以通过从模式控制器启动计数器,在输出比较模式或者 PWM 模式下产生波形。设置 TIMx_CR1 寄存器中的 OPM 位将选择单脉冲模式,这样可以让计数器自动地在产生下一个更新事件 UEV 时停止。

仅当比较值与计数器的初始值不同时,才能产生一个脉冲。启动之前(当定时器正在等待触发),必须如下配置:

- 向上计数方式: 计数器 CNT < CCRx ≤ ARR(特别地, 0 < CCRx)
- 向下计数方式: 计数器 CNT > CCRx

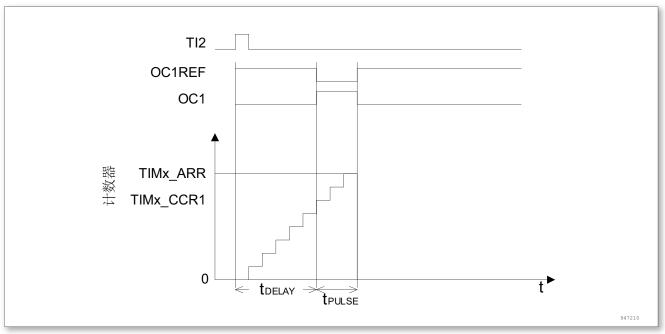


图 72. 单脉冲模式的例子

例如,你需要在从 TI2 输入脚上检测到一个上升沿开始,延迟 t_{DELAY} 之后,在 OC1 上产生一个长度为 t_{PULSE} 的正脉冲。

假定 TI2FP2 作为触发 1:

- 置 TIMx_CCMR1 寄存器中的 CC2S = 01,把 TI2FP2 映像到 TI2。
- 置 TIMx_CCER 寄存器中的 CC2P = 0, 使 TI2FP2 能够检测上升沿。
- 置 TIMx_SMCR 寄存器中的 TS = 110, TI2FP2 作为从模式控制器的触发 (TRGI)。
- 置 TIMx SMCR 寄存器中的 SMS = 110(触发模式), TI2FP2 被用来启动计数器。

OPM 的波形由写入比较寄存器的数值决定 (要考虑时钟频率和计数器预分频器)

- t_{DELAY} 由 TIMx_CCR1 寄存器中的值定义。
- tpul SE 由自动装载值和比较值之间的差值定义 (TIMx ARR TIMx CCR1)。
- 假定当发生比较匹配时要产生从 0 到 1 的波形,当计数器达到预装载值时要产生一个从 1 到 0 的波形;首先要置 TIMx_CCMR1 寄存器的 OC1M = 111,进入 PWM 模式 2;根据需要有选择地使能预装载寄存器:置 TIMx_CCMR1 中的 OC1PE = 1 和 TIMx_CR1 寄存器中的 ARPE;然后在 TIMx_CCR1 寄存器中填写比较值,在 TIMx_ARR 寄存器中填写自动装载值,设置 UG 位来产生一个更新事件,然后等待在 TI2 上的一个外部触发事件。本例中, CC1P = 0。

在这个例子中,TIMx_CR1 寄存器中的 DIR 和 CMS 位应该置低。

因为只需要一个脉冲,所以必须设置 TIMx_CR1 寄存器中的 OPM = 1,在下一个更新事件 (当计数器从自动装载值翻转到 0) 时停止计数。

特殊情况: OCx 快速使能:

在单脉冲模式下,在 Tlx 输入脚的边沿检测逻辑设置 CEN 位以启动计数器。然后计数器和比较值间的比较操作产生了输出的转换。但是这些操作需要一定的时钟周期,因此它限制了可得到的最小延时 tpelay。

如果要以最小延时输出波形,可以设置 TIMx_CCMRx 寄存器中的 OCxFE 位;此时强制

OCxREF(和 OCx) 直接响应激励而不再依赖比较的结果,输出的波形与比较匹配时的波形一样。OCxFE 只在通道配置为 PWM1 和 PWM2 模式时起作用。

15.3.16 编码器接口模式

选择编码器接口模式的方法是:如果计数器只在 TI2 的边沿计数,则置 TIMx_SMCR 寄存器中的 SMS = 001;如果只在 TI1 边沿计数,则置 SMS = 010;如果计数器同时在 TI1 和 TI2 边沿计数,则置 SMS = 011。

通过设置 TIMx_CCER 寄存器中的 CC1P 和 CC2P 位,可以选择 TI1 和 TI2 极性;如果需要,还可以对输入滤波器编程。两个输入 TI1 和 TI2 被用来作为增量编码器的接口。参看表 40,假定计数器已经启动 (TIMx_CR1 寄存器中的 CEN = 1),则计数器由每次在 TI1FP1 或 TI2FP2 上的有效跳变驱动。TI1FP1 和 TI2FP2 是 TI1 和 TI2 在通过输入滤波器和极性控制后的信号;如果没有滤波和变相,则 TI1FP1 = TI1;如果没有滤波和变相,则 TI2FP2 = TI2。根据两个输入信号的跳变顺序,产生了计数脉冲和方向信号。依据两个输入信号的跳变顺序,计数器向上或向下计数,同时硬件对 TIMx_CR1 寄存器的 DIR 位进行相应的设置。不管计数器是依靠 TI1 计数、依靠 TI2 计数或者同时依靠 TI1 和 TI2 计数,在任一输入端 (TI1 或者 TI2) 的跳变都会重新计算 DIR 位。

编码器接口模式基本上相当于使用了一个带有方向选择的外部时钟。这意味着计数器只在 0 到 TIMx_ARR 寄存器的自动装载值之间连续计数 (根据方向,或是 0 到 ARR 计数,或是 ARR 到 0 计数)。所以在开始计数之前必须配置 TIMx_ARR;同样,捕获器、比较器、预分频器、重复计数器、触发输出特性等仍工作如常。编码器模式和外部时钟模式 2 不兼容,因此不能同时操作。

在这个模式下,计数器依照增量编码器的速度和方向被自动的修改,因此计数器的内容始终指示着编码器的位置。计数方向与相连的传感器旋转的方向对应。下表列出了所有可能的组合,假设 TI1 和 TI2 不同时变换。

表 40. 计数方向与编码器信号

有效边沿	相对信号的电平(TITFP1 对应 TI2,	TI1FP1 信号	1	TI2FP2 信号		
	TI2FP2 对应 TI1)	上升	下降	上升	下降	
	高	向下计数	向上计数	不计数	不计数	
仅任 III 月 数	低	向上计数	向下计数	不计数	不计数	
仅在 TI2 计数	高	不计数	不计数	向上计数	向下计数	
仅任 HZ 计数	低	不计数	不计数	向下计数	向上计数	
在 TI1 和 TI2 上计	高	向下计数	向上计数	向上计数	向下计数	
_数	低	向上计数	向下计数	向下计数	向上计数	

一个外部的增量编码器可以直接与 MCU 连接而不需要外部接口逻辑。但是,一般使用比较器将编码器的差动输出转换到数字信号,这大大增加了抗噪声干扰能力。编码器输出的第三个信号表示机械零点,可以把它连接到一个外部中断输入并触发一个计数器复位。

下图是一个计数器操作的实例,显示了计数信号的产生和方向控制。它还显示了当选择了双边沿时,输入抖动是如何被抑制的;抖动可能会在传感器的位置靠近一个转换点时产生。在这个例子中,我们假定配置如下:

• CC1S = '01' (TIMx_CCMR1 寄存器, IC1FP1 映射到 TI1)

- CC2S = '01' (TIMx_CCMR2 寄存器, IC2FP2 映射到 TI2)
- CC1P = '0' (TIMx_CCER 寄存器, IC1FP1 不反相, IC1FP1=TI1)
- C2P = '0' (TIMx_CCER 寄存器, IC2FP2 不反相, IC2FP2=TI2)
- SMS = '011' (TIMx_SMCR 寄存器,所有的输入均在上升沿和下降沿有效).
- CEN = '1' (TIMx_CR1 寄存器, 计数器使能)



图 73. 编码器模式下的计数器操作实例

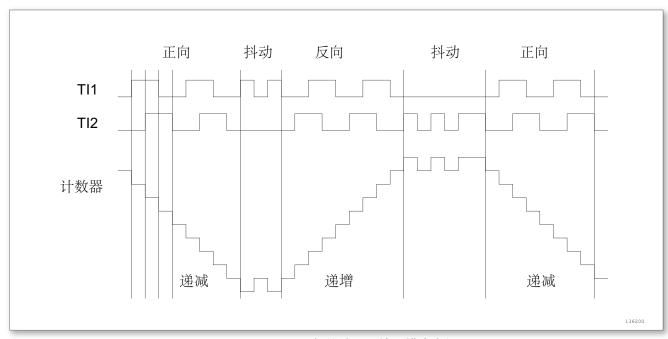


图 74. IC1FP1 反相的编码器接口模式实例

当定时器配置成编码器接口模式时,提供传感器当前位置的信息。使用第二个配置在捕获模式的定时器测量两个编码器事件的间隔,可以获得动态的信息(速度,加速度,减速度)。指示机械零点的编码器输出可被用做此目的。根据两个事件间的间隔,可以按照固定的时间读出计数器。如果可能的话,你可以把计数器的值锁存到第三个输入捕获寄存器(捕获信号必须是周期的并且可以由另一个定时器产生)。它也可以通过一个由实时时钟产生的 DMA

请求来读取它的值。

15.3.17 定时器输入异或功能

TIMx_CR2 寄存器中的 TI1S 位,允许通道 1 的输入滤波器连接到一个异或门的输出端,异或门的 3 个输入端为 TIMx CH1、TIMx CH2 和 TIMx CH3。

异或输出能够被用于所有定时器的输入功能,如触发或输入捕获。小节 15.3.18给出了此特性用于连接霍尔传感器的例子。

15.3.18 与霍尔传感器的接口

使用高级控制定时器 (TIM1/8) 产生 PWM 信号驱动马达时,可以用另一个通用 TIMx(TIM2 或 TIM3) 定时器作为"接口定时器"来连接霍尔传感器,见图 75,3 个定时器输入脚 (CC1、CC2、CC3) 通过一个异或门连接到 TI1 输入通道 (通过设置 TIMx_CR2 寄存器中的 TI1S 位来选择), '接口定时器'捕获这个信号。

从模式控制器被配置于复位模式,从输入是 TI1F_ED。每当 3 个输入之一变化时,计数器 从新从 0 开始计数。这样产生一个由霍尔输入端的任何变化而触发的时间基准。

'接口定时器'上的捕获/比较通道 1 配置为捕获模式,捕获信号为 TRC(见图 58)。捕获值反映了两个输入变化间的时间延迟,给出了马达速度的信息。

'接口定时器'可以用来在输出模式产生一个脉冲,这个脉冲可以 (通过触发一个 COM 事件) 用于改变高级定时器 TIM1/8 各个通道的属性,而高级控制定时器产生 PWM 信号驱动马达。因此"接口定时器"通道必须编程为在一个指定的延时 (输出比较或 PWM 模式) 之后产生一个正脉冲,这个脉冲通过 TRGO 输出被送到高级控制定时器 TIM1/8。

举例:霍尔输入连接到 TIMx 定时器,要求每次任一霍尔输入上发生变化之后的一个指定的时刻,改变高级控制定时器 TIMx 的 PWM 配置。

- 置 TIMx_CR2 寄存器的 TI1S 位为'1',配置三个定时器输入逻辑或到 TI1 输入,
- 时基编程:置 TIMx_ARR 为其最大值 (计数器必须通过 TI1 的变化清零)。设置预分频器得到一个最大的计数器周期,它长于传感器上的两次变化的时间间隔。
- 设置通道 1 为捕获模式 (选中 TRC): 置 TIMx_CCMR1 寄存器中 CC1S = 01, 如果需要, 还可以设置数字滤波器。
- 设置通道 2 为 PWM2 模式,并具有要求的延时:置 TIMx_CCMR1 寄存器中的 OC2M = 111 和 CC2S = 00。
- 选择 OC2REF 作为 TRGO 上的触发输出:置 TIMx CR2 寄存器中的 MMS = 101。

在高级控制寄存器 TIM1/8 中,正确的 ITR 输入必须是触发器输入,定时器被编程为产生 PWM 信号,捕获/比较控制信号为预装载的 (TIMx_CR2 寄存器中 CCPC = 1),同时触发输入控制 COM 事件 (TIMx_CR2 寄存器中 CCUS = 1)。在一次 COM 事件后,写入下一步的 PWM 控制位 (CCxE、OCxM),这可以在处理 OC2REF 上升沿的中断子程序里实现。下图显示了这个实例:

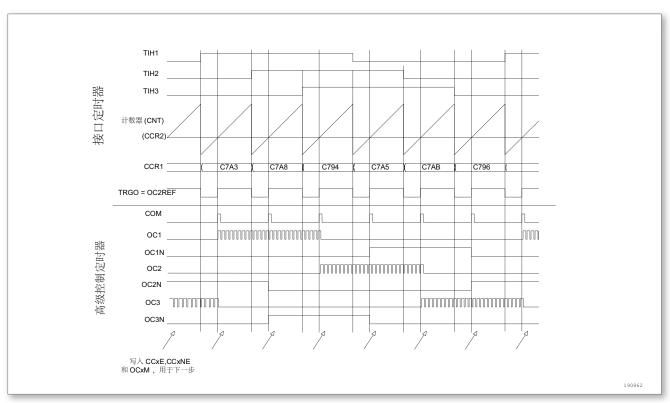


图 75. 霍尔传感器接口的实例

15.3.19 TIMx 定时器和外部触发的同步

TIMx 定时器能够在多种模式下和一个外部的触发同步: 复位模式、门控模式和触发模式。

从模式: 复位模式

在发生一个触发输入事件时,计数器和它的预分频器能够重新被初始化;同时,如果 TIMx_CR1 寄存器的 URS 位为低,还产生一个更新事件 UEV;然后所有的预装载寄存器 (TIMx_ARR, TIMx_CCRx) 都被更新了。

在以下的例子中,TI1 输入端的上升沿导致向上计数器被清零:

- 配置通道 1 以检测 TI1 的上升沿。配置输入滤波器的带宽 (在本例中,不需要任何滤波器,因此保持 IC1F = 0000)。触发操作中不使用捕获预分频器,所以不需要配置。CC1S 位只选择输入捕获源,即 TIMx_CCMR1 寄存器中 CC1S = 01。置 TIMx_CCER 寄存器中 CC1P = 0 以确定极性 (只检测上升沿)。
- 置 TIMx_SMCR 寄存器中 SMS = 100, 配置定时器为复位模式; 置 TIMx_SMCR 寄存器中 TS = 101, 选择 TI1 作为输入源。
- 置 TIMx CR1 寄存器中 CEN = 1, 启动计数器。

计数器开始依据内部时钟计数,然后正常运转直到 TI1 出现一个上升沿;此时,计数器被清零然后从 0 重新开始计数。同时,触发标志 (TIMx_SR 寄存器中的 TIF 位) 被设置,根据 TIMx_DIER 寄存器中 TIE(中断使能) 位和 TDE(DMA 使能) 位的设置,产生一个中断请求或一个 DMA 请求。

下图显示当自动重装载寄存器 TIMx_ARR = 0x36 时的动作。在 TI1 上升沿和计数器的实际复位之间的延时取决于 TI1 输入端的重同步电路。

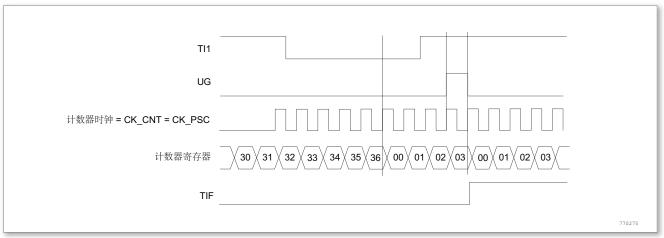


图 76. 复位模式下的控制电路

从模式:门控模式

计数器的使能依赖于选中的输入端的电平。

在如下的例子中, 计数器只在 TI1 为低时向上计数:

- 配置通道 1 以检测 TI1 上的低电平。配置输入滤波器带宽 (本例中,不需要滤波,所以保持 IC1F = 0000)。触发操作中不使用捕获预分频器,所以不需要配置。CC1S 位用于选择输入捕获源,置 TIMx_CCMR1 寄存器中 CC1S = 01 。置 TIMx_CCER 寄存器中 CC1P = 1 以确定极性 (只检测低电平)。
- 置 TIMx_SMCR 寄存器中 SMS = 101, 配置定时器为门控模式; 置 TIMx_SMCR 寄存器中 TS = 101, 选择 TI1 作为输入源。
- 置 TIMx_CR1 寄存器中 CEN = 1, 启动计数器。在门控模式下, 如果 CEN = 0, 则计数器不能启动, 不论触发输入电平如何。

只要 TI1 为低,计数器开始依据内部时钟计数,当 TI1 变高时停止计数。当计数器开始或停止时都设置 TIMx_SR 中的 TIF 标置。

TI1 上升沿和计数器实际停止之间的延时取决于 TI1 输入端的重同步电路。

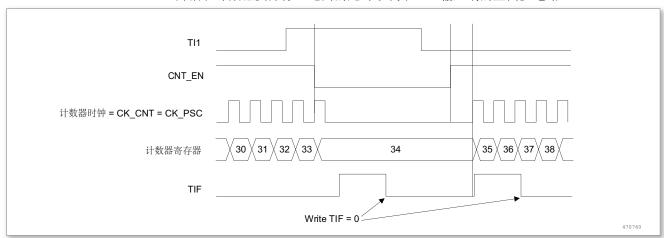


图 77. 门控模式下的控制电路

从模式: 触发模式

计数器的使能依赖于选中的输入端上的事件。

在下面的例子中, 计数器在 TI2 输入的上升沿开始向上计数:

- 配置通道 2 检测 TI2 的上升沿。配置输入滤波器带宽 (本例中,不需要任何滤波器,保持 IC2F = 0000)。触发操作中不使用捕获预分频器,不需要配置。CC2S 位只用于选择输入捕器中 CC2P = 1 以确定极性 (只检测低电平)。
- 置 TIMx_SMCR 寄存器中 SMS = 110, 配置定时器为触发模式; 置 TIMx_SMCR 寄存器中 TS = 110, 选择 TI2 作为输入源。

当 TI2 出现一个上升沿时,计数器开始在内部时钟驱动下计数,同时设置 TIF 标志。TI2 上升沿和计数器启动计数之间的延时取决于 TI2 输入端的重同步电路。

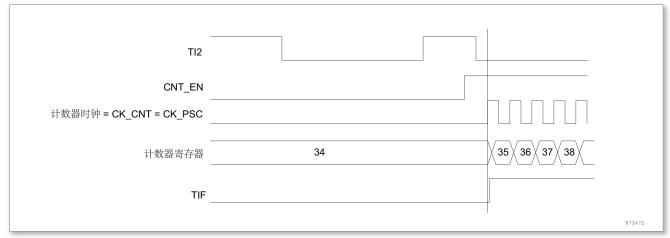


图 78. 触发器模式下的控制电路

从模式:外部时钟模式2+触发模式

外部时钟模式 2 可以与另一种从模式 (外部时钟模式 1 和编码器模式除外) 一起使用。这时,ETR 信号被用作外部时钟的输入,在复位模式、门控模式或触发模式可以选择另一个输入作为触发输入。不建议使用 TIMx_SMCR 寄存器的 TS 位选择 ETR 作为 TRGI。

在下面的例子中,当 TI1 上出现一个上升沿时,计数器即在 ETR 的每一个上升沿向上计数一次:

- 通过 TIMx_SMCR 寄存器配置外部触发输入电路:
 - ETF = 0000: 没有滤波
 - ETPS = 00: 不用预分频器
 - ETP = 0: 检测 ETR 的上升沿,置 ECE = 1 使能外部时钟模式 2。
- 按如下配置通道 1, 检测 TI 的上升沿:
 - IC1F = 0000: 没有滤波
 - 触发操作中不使用捕获预分频器,不需要配置
 - 置 TIMx CCMR1 寄存器中 CC1S = 01,选择输入捕获源
 - 置 TIMx_CCER 寄存器中 CC1P = 0 以确定极性 (只检测上升沿)
- 置 TIMx_SMCR 寄存器中 SMS = 110, 配置定时器为触发模式。置 TIMx_SMCR 寄存器中 TS = 101, 选择 TI1 作为输入源。

当 TI1 上出现一个上升沿时,TIF 标志被设置,计数器开始在 ETR 的上升沿计数。

ETR 信号的上升沿和计数器实际复位间的延时取决于 ETRP 输入端的重同步电路。

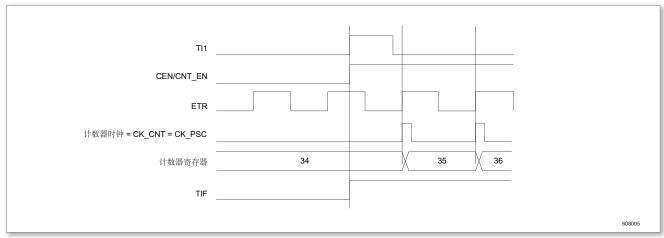


图 79. 外部时钟模式 2 +触发模式下的控制电路

15.3.20 定时器同步

所有 TIM 定时器在内部相连,用于定时器同步或链接。详见章节 TIM2/3/4。

15.3.21 调试模式

当微控制器进入调试模式时 (CPU 核心停止),根据 DBG 模块中 DBG_TIMx_STOP 的设置,TIMx 计数器可以或者继续正常操作,或者停止。详见随后的调试章节。

15.4 寄存器描述

表 41. TIM1/8 寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	TIMx_CR1	控制寄存器 1	0x00000000	小节 15.4.1
0x04	TIMx_CR2	控制寄存器 2	0x00000000	小节 15.4.2
0x08	TIMx_SMCR	从模式控制寄存器	0x00000000	小节 15.4.3
0x0C	TIMX_DIER	DMA/中断使能寄存器	0x00000000	小节 15.4.4
0x10	TIMx_SR	状态寄存器	0x00000000	小节 15.4.5
0x14	TIMx_EGR	事件产生寄存器	0x00000000	小节 15.4.6
0x18	TIMx_CCMR1	捕获/比较模式寄存器 1	0x00000000	小节 15.4.7
0x1C	TIMx_CCMR2	捕获/比较模式寄存器 2	0x00000000	小节 15.4.8
0x20	TIMx_CCER	捕获/比较使能寄存器	0x00000000	小节 15.4.9
0x24	TIMx_CNT	计数器	0x00000000	小节 15.4.10
0x28	TIMx_PSC	预分频率器	0x00000000	小节 15.4.11
0x2C	TIMx_ARR	自动装载寄存器	0x00000000	小节 15.4.12
0x30	TIMx_RCR	重复计数寄存器	0x00000000	小节 15.4.13
0x34	TIMx_CCR1	捕获/比较寄存器 1	0x00000000	小节 15.4.14
0x38	TIMx_CCR2	捕获/比较寄存器 2	0x00000000	小节 15.4.15
0x3C	TIMx_CCR3	捕获/比较寄存器 3	0x00000000	小节 15.4.16
0x40	TIMx_CCR4	捕获/比较寄存器 4	0x00000000	小节 15.4.17

Offset	Acronym	Register Name	Reset	Section
0x44	TIMx_BDTR	刹车和死区寄存器	0x00000000	小节 15.4.18
0x48	TIMx_DCR	DMA 控制寄存器	0x00000000	小节 15.4.19
0x4C	TIMx_DMAR	连续模式的 DMA 地址	0x00000000	小节 15.4.20
0x54	TIMx_CCMR3	捕获/比较模式寄存器 3	0x00000000	小节 15.4.21
0x58	TIMx_CCR5	捕获/比较寄存器 5	0x00000000	小节 15.4.22

15.4.1 控制寄存器 1(TIMx_CR1)

偏移地址: 0x00 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Res	erved			Cł	(D	ARPE	CN	/IS	DIR	ОРМ	URS	UDIS	CEN
						rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

D.	Tiold.	Tour	Deset	Description
Bit	Field	Туре	Reset	Description
15: 10	Reserved			保留,始终读为0
9: 8	CKD	rw	0x00	时钟分频因子 (Clock division)
				这 2 位定义在定时器时钟 (CK_INT) 频率、死区时间和由
				死区发生器与数字滤波器 (ETR, Tlx) 所用的采样时钟之间
				的分频比例。
				00: $t_{DTS} = t_{CK_INT}$
				01: $t_{DTS} = 2 \times t_{CK_INT}$
				10: $t_{DTS} = 4 \times t_{CK_INT}$
				11:保留,不要使用这个配置
7	ARPE	rw	0x00	自动重装载预装载允许位 (Auto-reload preload enable)
				0: TIMx_ARR 寄存器没有缓冲
				1: TIMx_ARR 寄存器被装入缓冲器
6: 5	CMS	rw	0x00	选择中央对齐模式 (Center-aligned mode selection)
				00: 边沿对齐模式。计数器依据方向位 (DIR) 向上或向下
				计数
				01: 中央对齐模式 1。计数器交替地向上和向下计数。配置
				为输出的通道 (TIMx_CCMRx 寄存器中 CCxS = 00) 的输
				出比较中断标志位,只在计数器向下计数时被设置
				10: 中央对齐模式 2。计数器交替地向上和向下计数。配置
				为输出的通道 (TIMx_CCMRx 寄存器中 CCxS = 00) 的输
				出比较中断标志位,只在计数器向上计数时被设置
				11: 中央对齐模式 3。计数器交替地向上和向下计数。配置
				为输出的通道 (TIMx_CCMRx 寄存器中 CCxS = 00) 的输
				出比较中断标志位,在计数器向上和向下计数时均被设置
				注: 在计数器开启时 (CEN = 1), 不允许从边沿对齐模式转
				换到中央对齐模式。

Bit	Field	Туре	Reset	Description
4	DIR	rw	0x00	方向 (Direction)
				0: 计数器向上计数
				1: 计数器向下计数
				: 当计数器配置为中央对齐模式或编码器模式时,该位为只读。
3	OPM	rw	0x00	单脉冲模式 (One pulse mode)
				0: 在发生更新事件时,计数器不停止
				1: 在发生下一次更新事件 (清除 CEN 位) 时,计数器停止
2	URS	rw	0x00	更新请求源 (Update request source) 软件通过该位选择
				UEV 事件的源。
				0: 如果允许产生更新中断或 DMA 请求,则下述任一事件
				产生一个更新中断或 DMA 请求:
				- 计数器溢出/下溢
				- 设置 UG 位
				- 从模式控制器产生的更新
				1: 如果允许产生更新中断或 DMA 请求,则只有计数器溢
				出/下溢才产生一个更新中断或 DMA 请求
1	UDIS	rw	0x00	禁止更新 (Update disable) 软件通过该位允许/禁止 UEV 事件的产生
				0: 允许 UEV。更新 (UEV) 事件由下述任一事件产生:
				- 计数器溢出/下溢
				- 设置 UG 位
				- 从模式控制器产生的更新被缓存的寄存器被装入它们的
				预装载值。
				1:禁止 UEV。不产生更新事件,影子寄存器 (ARR、PSC、
				CCRx) 保持它们的值。如果设置了 UG 位或从模式控制器
				发出了一个硬件复位,则计数器和预分频器被重新初始化
0	CEN	rw	0x00	允许计数器 (Counter enable)
				0: 禁止计数器
				1: 使能计数器。
				注:在软件设置了 CEN 位后,外部时钟、门控模式和编码器模
				式才能工作。触发模式可以自动地通过硬件设置 CEN 位。

15.4.2 控制寄存器 2(TIMx_CR2)

偏移地址: 0x04

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						R	Reserve	ed							OIS5
															rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	OIS4	OIS3N	OIS3	OIS2N	OIS2	OIS1N	OIS1	TI1S		MMS		CCDS	ccus	Res.	CCPC
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		rw

Bit	Field	Туре	Reset	Description
31: 17	Reserved			保留,始终读为0
16	OIS5	rw	0x00	输出空闲状态 5(OC5 输出)。参见 OIS1 位。
15	Reserved			保留,始终读为0
14	OIS4	rw	0x00	输出空闲状态 4(OC4 输出)。参见 OIS1 位。
13	OIS3N	rw	0x00	输出空闲状态 3(OC3N 输出)。参见 OIS1N 位。
12	OIS3	rw	0x00	输出空闲状态 3(OC3 输出)。参见 OIS1 位。
11	OIS2N	rw	0x00	输出空闲状态 2(OC2N 输出)。参见 OIS1N 位。
10	OIS2	rw	0x00	输出空闲状态 2(OC2 输出)。参见 OIS1 位。
9	OIS1N	rw	0x00	输出空闲状态 1(OC1N 输出)(Output Idle state 1)
				0: 当 MOE = 0 时,死区后 OC1N = 0
				1: 当 MOE = 0 时,死区后 OC1N = 1
				注: 已经设置了 LOCK(TIMx_BKR 寄存器) 级别 1、2 或 3 后,该
				位不能被修改。
8	OIS1	rw	0x00	输出空闲状态 1(OC1 输出)(Output Idle state 1)
				0: 当 MOE = 0 时,如果实现了 OC1N,则死区后 OC1 = 0
				1: 当 MOE = 0 时,如果实现了 OC1N,则死区后 OC1 = 1
				注: 已经设置了 LOCK(TIMx_BKR 寄存器) 级别 1、2 或 3 后,该
				位不能被修改。
7	TI1S	rw	0x00	TI1 选择 (TI1 selection)

0: TIMx_CH1 管脚连到 TI1 输入

1: TIMx_CH1、TIMx_CH2 和 TIMx_CH3 管脚经异或后连到 TI1 输入

Bit	Field	Туре	Reset	Description
6: 4	MMS	rw	0x00	主模式选择 (Master mode selection) 这两位用于选择在主模式下送到从定时器的同步信息 (TRGO)。可能的组合如下: 000: 复位-TIMx_EGR 寄存器的 UG 位被用于作为触发输出 (TRGO)。如果触发输入 (从模式控制器处于复位模式)产生复位,则 TRGO 上的信号相对实际的复位会有一个延迟。 001: 使能-计数器使能信号 CNT_EN 被用于作为触发输出 (TRGO)。有时需要在同一时间启动多个定时器或控制在一段时间内使能从定时器。计数器使能信号是通过 CEN 控制位和门控模式下的触发输入信号的逻辑或产生。当计数器使能信号受控于触发输入时,TRGO 上会有一个延迟,除非选择了主/从模式 (见 TIMx_SMCR 寄存器中 MSM 位的描述)。 010: 更新-更新事件被选为触发输入 (TRGO)。例如,一个主定时器的时钟可以被用作一个从定时器的预分频器。 011: 比较脉冲-发生一次捕获或一次比较成功时,当要设置 CC1IF 标志时 (即使它已经为高),触发输出送出一个正脉冲 (TRGO)。 100: 比较-OC1REF 信号被用于作为触发输出 (TRGO) 111: 比较-OC3REF 信号被用于作为触发输出 (TRGO) 111: 比较-OC3REF 信号被用于作为触发输出 (TRGO) 111: 比较-OC3REF 信号被用于作为触发输出 (TRGO) 111: 比较-OC4REF 信号被用于作为触发输出 (TRGO) 111: 比较-OC4REF 信号被用于作为触发输出 (TRGO) 111: 比较-OC4REF 信号被用于作为触发输出 (TRGO)
3	CCDS	rw	0x00	捕获/比较的 DMA 选择 (Capture/compare DMA selection) 0: 当发生 CCx 事件时,送出 CCx 的 DMA 请求 1: 当发生更新事件时,送出 CCx 的 DMA 请求
2	CCUS	ΓW	0x00	捕获/比较控制更新选择 (Capture/compare control update selection) 0: 如果捕获/比较控制位是预装载的 (CCPC = 1), 只能通过设置 COM 位更新它们 1: 如果捕获/比较控制位是预装载的 (CCPC = 1), 可以通过设置 COM 位或 TRGI 上的一个上升沿更新它们注:该位只对具有互补输出的通道起作用。
1	Reserved			保留,始终读为0
0	CCPC	rw	0x00	捕获/比较预装载控制位 (Capture/compare preloaded control) 0: CCxE, CCxNE 和 OCxM 位不是预装载的 1: CCxE, CCxNE 和 OCxM 位是预装载的;设置该位后,它们只在设置了 COM 位后被更新注:该位只对具有互补输出的通道起作用。

15.4.3 从模式控制寄存器 (TIMx_SMCR)

偏移地址: 0x08 复位值: 0x0000

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ETP	ECE	ET	PS		ETF				MSM TS			OCCS SMS			
_	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

上升沿驱动注 1: 设置 ECE 位与选择外部时钟模式 1 并将 TRGI 连到 ETRF(SMS = 111 和 TS = 111) 具有相同功效。 注 2: 下述从模式可以与外部时钟模式 2 同时使用: 复位模式, 广控模式和触发模式: 但是, 这时 TRGI 不能连到 ETRF(TS 位不能是 111)。 注 3: 外部时钟模式 1 和外部时钟模式 2 同时被使能时, 外部时钟的输入是 ETRF。 13: 12 ETPS rw 0x00 外部触发预分频 (External trigger prescaler) 外部触发信号 ETRP 的频率必须最多是 TIMxCLK 频率的					
该位选择是用 ETR 还是 ETR 的反相来作为触发操作。 0: ETR 不反相,高电平或上升沿有效 1: ETR 被反相,低电平或下降沿有效 14 ECE rw Ox00 外部时钟使能位 (External clock enable) 该位启用外部时钟模式 2。 0: 禁止外部时钟模式 2,计器由 ETRF 信号上的任意有效 上升沿驱动 注 1: 设置 ECE 位与选择外部时钟模式 1 并将 TRGI 连到 ETRF(SMS = 111 和 TS = 111) 具有相同功效。 注 2: 下述从模式可以与外部时钟模式 2 同时使用: 复位模式,「 控模式和触发模式:但是,这时 TRGI 不能连到 ETRF(TS 位不能是 111)。 注 3: 外部时钟模式 1 和外部时钟模式 2 同时被使能时,外部时 钟的输入是 ETRF。 13: 12 ETPS rw Ox00 外部触发预分频 (External trigger prescaler) 外部触发信号 ETRP 的频率必须最多是 TIMxCLK 频率的	Bit	Field	Type	Reset	Description
0: ETR 不反相, 高电平或上升沿有效 1: ETR 被反相, 低电平或下降沿有效 14 ECE rw 0x00 外部时钟使能位 (External clock enable) 该位启用外部时钟模式 2。 0: 禁止外部时钟模式 2 1: 使能外部时钟模式 2, 计器由 ETRF 信号上的任意有效上升沿驱动注 1: 设置 ECE 位与选择外部时钟模式 1 并将 TRGI 连到 ETRF(SMS = 111 和 TS = 111) 具有相同功效。 注 2: 下述从模式可以与外部时钟模式 2 同时使用: 复位模式, 厂 控模式和触发模式; 但是, 这时 TRGI 不能连到 ETRF(TS 位不能是 111)。 注 3: 外部时钟模式 1 和外部时钟模式 2 同时被使能时, 外部时钟的输入是 ETRF。 13: 12 ETPS rw 0x00 外部触发预分频 (External trigger prescaler) 外部触发信号 ETRP 的频率必须最多是 TIMxCLK 频率的	15	ETP	rw	0x00	,
1: ETR 被反相, 低电平或下降沿有效 14 ECE rw 0x00 外部时钟使能位 (External clock enable) 该位启用外部时钟模式 2。 0: 禁止外部时钟模式 2 1: 使能外部时钟模式 2,计器由 ETRF 信号上的任意有效上升沿驱动注 1: 设置 ECE 位与选择外部时钟模式 1 并将 TRGI 连至 ETRF(SMS = 111 和 TS = 111) 具有相同功效。注 2: 下述从模式可以与外部时钟模式 2 同时使用: 复位模式, 厂 控模式和触发模式; 但是, 这时 TRGI 不能连到 ETRF(TS 位不能是 111)。注 3: 外部时钟模式 1 和外部时钟模式 2 同时被使能时, 外部时钟的输入是 ETRF。 13: 12 ETPS rw 0x00 外部触发预分频 (External trigger prescaler) 外部触发信号 ETRP 的频率必须最多是 TIMxCLK 频率的					
14 ECE rw 0x00 外部时钟使能位 (External clock enable) 该位启用外部时钟模式 2。 0: 禁止外部时钟模式 2 1: 使能外部时钟模式 2,计器由 ETRF 信号上的任意有效上升沿驱动注 1: 设置 ECE 位与选择外部时钟模式 1 并将 TRGI 连到 ETRF(SMS = 111 和 TS = 111) 具有相同功效。 注 2: 下述从模式可以与外部时钟模式 2 同时使用: 复位模式, 厂 控模式和触发模式; 但是, 这时 TRGI 不能连到 ETRF(TS 位不能是 111)。 注 3: 外部时钟模式 1 和外部时钟模式 2 同时被使能时, 外部时钟的输入是 ETRF。 13: 12 ETPS rw 0x00 外部触发预分频 (External trigger prescaler) 外部触发信号 ETRP 的频率必须最多是 TIMxCLK 频率的					0: ETR 不反相,高电平或上升沿有效
该位启用外部时钟模式 2。 0: 禁止外部时钟模式 2 1: 使能外部时钟模式 2,计器由 ETRF 信号上的任意有效上升沿驱动注 1: 设置 ECE 位与选择外部时钟模式 1 并将 TRGI 连到 ETRF(SMS = 111 和 TS = 111) 具有相同功效。注 2: 下述从模式可以与外部时钟模式 2 同时使用: 复位模式, 广控模式和触发模式; 但是, 这时 TRGI 不能连到 ETRF(TS 位不能是 111)。 注 3: 外部时钟模式 1 和外部时钟模式 2 同时被使能时, 外部时钟的输入是 ETRF。 13: 12 ETPS rw 0x00 外部触发预分频 (External trigger prescaler) 外部触发信号 ETRP 的频率必须最多是 TIMxCLK 频率的					1: ETR 被反相,低电平或下降沿有效
0: 禁止外部时钟模式 2 1: 使能外部时钟模式 2, 计器由 ETRF 信号上的任意有效上升沿驱动注 1: 设置 ECE 位与选择外部时钟模式 1 并将 TRGI 连到 ETRF(SMS = 111 和 TS = 111) 具有相同功效。注 2: 下述从模式可以与外部时钟模式 2 同时使用: 复位模式, 厂 控模式和触发模式; 但是, 这时 TRGI 不能连到 ETRF(TS 位不能是 111)。注 3: 外部时钟模式 1 和外部时钟模式 2 同时被使能时, 外部时钟的输入是 ETRF。 13: 12 ETPS rw 0x00 外部触发预分频 (External trigger prescaler) 外部触发信号 ETRP 的频率必须最多是 TIMxCLK 频率的	14	ECE	rw	0x00	外部时钟使能位 (External clock enable)
1: 使能外部时钟模式 2, 计器由 ETRF 信号上的任意有效上升沿驱动注 1: 设置 ECE 位与选择外部时钟模式 1 并将 TRGI 连到 ETRF(SMS = 111 和 TS = 111) 具有相同功效。注 2: 下述从模式可以与外部时钟模式 2 同时使用: 复位模式, 下控模式和触发模式; 但是, 这时 TRGI 不能连到 ETRF(TS 位不能是 111)。注 3: 外部时钟模式 1 和外部时钟模式 2 同时被使能时, 外部时钟的输入是 ETRF。 13: 12 ETPS rw 0x00 外部触发预分频 (External trigger prescaler) 外部触发信号 ETRP 的频率必须最多是 TIMxCLK 频率的					该位启用外部时钟模式 2。
上升沿驱动注 1:设置 ECE 位与选择外部时钟模式 1 并将 TRGI 连到 ETRF(SMS = 111 和 TS = 111)具有相同功效。 注 2:下述从模式可以与外部时钟模式 2 同时使用:复位模式, 广控模式和触发模式;但是,这时 TRGI 不能连到 ETRF(TS 位不能是 111)。 注 3:外部时钟模式 1 和外部时钟模式 2 同时被使能时,外部时钟的输入是 ETRF。 13: 12 ETPS rw 0x00 外部触发预分频 (External trigger prescaler) 外部触发信号 ETRP 的频率必须最多是 TIMxCLK 频率的					0: 禁止外部时钟模式 2
注 1: 设置 ECE 位与选择外部时钟模式 1 并将 TRGI 连到 ETRF(SMS = 111 和 TS = 111) 具有相同功效。 注 2: 下述从模式可以与外部时钟模式 2 同时使用: 复位模式, 广控模式和触发模式; 但是, 这时 TRGI 不能连到 ETRF(TS 位不能是 111)。 注 3: 外部时钟模式 1 和外部时钟模式 2 同时被使能时, 外部时钟的输入是 ETRF。 13: 12 ETPS rw 0x00 外部触发预分频 (External trigger prescaler) 外部触发信号 ETRP 的频率必须最多是 TIMxCLK 频率的					1: 使能外部时钟模式 2, 计器由 ETRF 信号上的任意有效
ETRF(SMS = 111 和 TS = 111) 具有相同功效。 注 2: 下述从模式可以与外部时钟模式 2 同时使用: 复位模式, 广控模式和触发模式; 但是, 这时 TRGI 不能连到 ETRF(TS 位不能是 111)。 注 3: 外部时钟模式 1 和外部时钟模式 2 同时被使能时, 外部时钟的输入是 ETRF。 13: 12 ETPS W 小部触发预分频 (External trigger prescaler) 外部触发信号 ETRP 的频率必须最多是 TIMxCLK 频率的					
注 2: 下述从模式可以与外部时钟模式 2 同时使用: 复位模式, 广控模式和触发模式; 但是, 这时 TRGI 不能连到 ETRF(TS 位不能是 111)。 注 3: 外部时钟模式 1 和外部时钟模式 2 同时被使能时, 外部时钟的输入是 ETRF。 13: 12 ETPS rw 0x00 外部触发预分频 (External trigger prescaler) 外部触发信号 ETRP 的频率必须最多是 TIMxCLK 频率的					
控模式和触发模式;但是,这时 TRGI 不能连到 ETRF(TS 位不能是 111)。 注 3: 外部时钟模式 1 和外部时钟模式 2 同时被使能时,外部时钟的输入是 ETRF。 13: 12 ETPS rw 0x00 外部触发预分频 (External trigger prescaler) 外部触发信号 ETRP 的频率必须最多是 TIMxCLK 频率的					
能是 111)。 注 3: 外部时钟模式 1 和外部时钟模式 2 同时被使能时, 外部时钟的输入是 ETRF。 13: 12 ETPS rw 0x00 外部触发预分频 (External trigger prescaler) 外部触发信号 ETRP 的频率必须最多是 TIMxCLK 频率的					
対的輸入是 ETRF。13: 12 ETPSrw0x00外部触发预分频 (External trigger prescaler)外部触发信号 ETRP 的频率必须最多是 TIMxCLK 频率的					·
13: 12 ETPS rw 0x00 外部触发预分频 (External trigger prescaler) 外部触发信号 ETRP 的频率必须最多是 TIMxCLK 频率的					注 3: 外部时钟模式 1 和外部时钟模式 2 同时被使能时, 外部时
外部触发信号 ETRP 的频率必须最多是 TIMxCLK 频率的					钟的输入是 ETRF。
	13: 12	ETPS	rw	0x00	外部触发预分频 (External trigger prescaler)
1/4 <u>3 始入较</u> 机的处郊时轴时 可以使用额公 <u>辆</u> 降低 ETDF					外部触发信号 ETRP 的频率必须最多是 TIMxCLK 频率的
1/4。					1/4。当输入较快的外部时钟时,可以使用预分频降低 ETRP
的频率。					的频率。
00: 关闭预分频					00: 关闭预分频
01: ETRP 频率除以 2					01: ETRP 频率除以 2
10: ETRP 频率除以 4					10: ETRP 频率除以 4
11: ETRP 频率除以 8					11: ETRP 频率除以 8

Bit	Field	Type	Reset	Description
11: 8	ETF	rw	0x00	外部触发滤波 (External trigger filter) 这些位定义了对 ETRP 信号采样的频率和对 ETRP 数字滤波的带宽。实际上,数字滤波器是一个事件计数器,它记录到 N 个事件后会产生一个输出的跳变。 0000: 无滤波器,以 fDTS 采样 0001: 采样频率 f _{SAMPLING} =f _{CK_INT} , N = 2 0010: 采样频率 f _{SAMPLING} =f _{CK_INT} , N = 4 0011: 采样频率 f _{SAMPLING} =f _{CK_INT} , N = 8 0100: 采样频率 f _{SAMPLING} =f _{DTS} /2, N = 6 0101: 采样频率 f _{SAMPLING} =f _{DTS} /2, N = 8 0110: 采样频率 f _{SAMPLING} =f _{DTS} /4, N = 8 1000: 采样频率 f _{SAMPLING} =f _{DTS} /4, N = 8 1001: 采样频率 f _{SAMPLING} =f _{DTS} /8, N = 8 1010: 采样频率 f _{SAMPLING} =f _{DTS} /16, N = 5 1011: 采样频率 f _{SAMPLING} =f _{DTS} /16, N = 6 1100: 采样频率 f _{SAMPLING} =f _{DTS} /16, N = 8 1101: 采样频率 f _{SAMPLING} =f _{DTS} /32, N = 5 1110: 采样频率 f _{SAMPLING} =f _{DTS} /32, N = 6
7	MSM	rw	0x00	主/从模式 (Master/slave mode) 0: 无作用 1: 触发输入 (TRGI) 上的事件被延迟了,以允许在当前定时器 (通过 TRGO) 与它的从定时器间的完美同步,这对要求把几个定时器同步到一个单一的外部事件时是非常有用的
6: 4	TS	rw	0x00	触发选择 (Trigger selection) 这 3 位选择用于同步计数器的触发输入。 000: 内部触发 0(ITR0) 001: 内部触发 1(ITR1) 010: 内部触发 2(ITR2) 011: 内部触发 3(ITR3) 100: TI1 的边沿检测器 (TI1F_ED) 101: 滤波后的定时器输入 1(TI1FP1) 110: 滤波后的定时器输入 2(TI2FP2) 111: 外部触发输入 (ETRF) 更多有关 ITRx 的细节,参见下表。 注: 这些位只能在未用到 (如 SMS = 000) 时被改变,以避免在改变时产生错误的边沿检测。

Bit	Field	Туре	Reset	Description
3	occs	rw	0x00	比较器输出信号清除选择 (Output compare clear selec-
				tion)
				在 PWM 模式下,清除比较器输出
				1: 比较器输出作为清除信号
				0: 外部触发信号作为清除信号
2: 0	SMS	rw	0x00	从模式选择 (Slave mode selection)
				当选择了外部信号,触发信号 (TRGI) 的有效边沿与选中的
				外部输入极性相关 (见输入控制寄存器和控制寄存器的说明)
				000: 关闭从模式 - 如果 CEN = 1,则预分频器直接由内部
				时钟驱动。
				001: 编码器模式 1-根据 TI1FP1 的电平,计数器在 TI2FP2
				的边沿向上/下计数。
				010: 编码器模式 2-根据 TI2FP2 的电平, 计数器在 TI1FP1
				的边沿向上/下计数。
				011: 编码器模式 3 - 根据另一个输入的电平, 计数器在
				TI1FP1 和 TI2FP2 的边沿向上/下计数。
				100: 复位模式 - 选中的触发输入 (TRGI) 的上升沿重新初
				始化计数器,并且产生一个更新寄存器的信号。
				101: 门控模式 - 当触发输入 (TRGI) 为高时,计数器的时
				钟开启。当触发输入变为低时,计数器停止(但不复位)。计
				数器的启动和停止都是受控的。
				110: 触发模式 - 计数器在触发输入 TRGI 的上升沿启动 (但
				不复位),只有计数器的启动是受控的。
				111: 外部时钟模式 1 - 选中的触发输入 (TRGI) 的上升沿
				驱动计数器。
				注: 如果 TI1F_EN 被选为触发输入 (TS = 100) 时,不要使用门
				控模式。这是因为, TI1F_ED 在每次 TI1F 变化时输出一个脉冲,
				然而门控模式是要检查触发输入的电平。

表 42. TIMx 内部触发连接

从定时器	ITR0	ITR1	ITR2	ITR3
TIM1	TIM8	TIM2	TIM3	无
TIM2	TIM1	TIM8	TIM3	无
TIM3	TIM1	TIM2	TIM8	无
TIM8	TIM1	TIM2	无	TIM3

15.4.4 DMA/中断使能寄存器 (TIMX_DIER)

偏移地址: 0x0C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved										CC5 DE	CC5 IE			
														rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	TDE	COM DE	CC4 DE	CC3 DE	CC2 DE	CC1 DE	UDE	BIE	TIE	COM IE	CC4 IE	CC3 IE	CC2 IE	CC1 IE	UIE
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31:18	Reserved			保留,始终读为0
17	CC5DE	rw	0x00	允许捕获/比较 5 的 DMA 请求(Capture/Compare 5 DMA
				request enable)
				0: 禁止捕获/比较 5 的 DMA 请求
				1: 允许捕获/比较 5 的 DMA 请求
16	CC5IE	rw	0x00	允许捕获/比较 5 中断 (Capture/Compare 5 interrupt en-
				able)
				0: 禁止捕获/比较 5 中断
				1: 允许捕获/比较 5 中断
15	Reserved			保留,始终读为0
14	TDE	rw	0x00	允许触发 DMA 请求 (Trigger DMA request enable)
				0:禁止触发 DMA 请求
				1: 允许触发 DMA 请求
13	COMDE	rw	0x00	允许 COM 的 DMA 请求 (COM DMA request enable)
				0: 禁止 COM 的 DMA 请求
				1: 允许 COM 的 DMA 请求
12	CC4DE	rw	0x00	允许捕获/比较 4 的 DMA 请求 (Capture/Compare 4 DMA
				request enable)
				0: 禁止捕获/比较 4 的 DMA 请求
				1: 允许捕获/比较 4 的 DMA 请求
11	CC3DE	rw	0x00	允许捕获/比较 3 的 DMA 请求 (Capture/Compare 3 DMA
				request enable)
				0: 禁止捕获/比较 3 的 DMA 请求
				1: 允许捕获/比较 3 的 DMA 请求
10	CC2DE	rw	0x00	允许捕获/比较 2 的 DMA 请求 (Capture/Compare 2 DMA
				request enable)
				0: 禁止捕获/比较 2 的 DMA 请求
				1: 允许捕获/比较 2 的 DMA 请求
9	CC1DE	rw	0x00	允许捕获/比较 1 的 DMA 请求 (Capture/Compare 1 DMA
				request enable)
				0: 禁止捕获/比较 1 的 DMA 请求
				1: 允许捕获/比较 1 的 DMA 请求
8	UDE	rw	0x00	允许更新的 DMA 请求 (Update DMA request enable)
				0: 禁止更新的 DMA 请求
				1: 允许更新的 DMA 请求

7 DE 0.00 AVEXITE	n
7 BIE rw 0x00 允许刹车中	断 (Break interrupt enable)
0: 禁止刹雪	车中断
	车中断
	能 (Trigger interrupt enable)
0: 禁止触知	
1: 使能触知	
	中断 (COM interrupt enable)
0: 禁止 CC	
1: 允许 CC	
	比较 4 中断 (Capture/Compare 4 interrupt en-
able)	W
	快/比较 4 中断
	快比较4中断
	比较 3 中断 (Capture/Compare 3 interrupt en-
able)	# 11.4 + 0 + W
	快快转3中断
	失/比较 3 中断
	比较 2 中断 (Capture/Compare 2 interrupt en-
able)	块/比较 2 中断
	庆/比较 2 中断
	比较 1 中断 (Capture/Compare 1 interrupt en-
able)	L权 1 中國 (Capture/Compare 1 interrupt en-
	族/比较 1 中断
	快比较 1 中断
	断 (Update interrupt enable)
0: 禁止更新	
1. 允许更新	

15.4.5 状态寄存器 (TIMx_SR)

偏移地址: 0x10

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved										CC5 IF				
														,	rc_w0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserve	ed	CC4 OF	CC3 OF	CC2 OF	CC1 OF	Res.	BIF	TIF	COM IF	CC4 IF	CC3 IF	CC2 IF	CC1 IF	UIF
			rc_w0	rc_w0	rc_w0	rc_w0		rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0

Bit	Field	Туре	Reset	Description
31: 17	Reserved			保留,始终读为0
16	CC5IF	rc_w0	0x00	捕获/比较 5 中断标记(Capture/Compare 5 interrupt flag)
				参考 CC1IF 描述。
15: 13	Reserved			保留,始终读为0
12	CC4OF	rc_w0	0x00	捕获/比较 4 重复捕获标记 (Capture/Compare 4 overcap-
				ture flag)
44	00005		0.00	参见 CC10F 描述。
11	CC3OF	rc_w0	0x00	捕获/比较 3 重复捕获标记 (Capture/Compare 3 overcap-
				ture flag) 参见 CC1OF 描述。
10	CC2OF	rc_w0	0x00	捕获/比较 2 重复捕获标记 (Capture/Compare 2 overcap-
10	00201	10_W0	0,000	ture flag)
				参见 CC1OF 描述。
9	CC10F	rc_w0	0x00	捕获/比较 1 重复捕获标记 (Capture/Compare 1 overcap-
		_		ture flag)
				仅当相应的通道被配置为输入捕获时,该标记可由硬件置
				1。写 0 可清除该位。
				0: 无重复捕获产生;
				1: 计数器的值被捕获到 TIMx_CCR1 寄存器时, CC1IF 的
				状态已经为 1。
8	Reserved			保留,始终读为0
7	BIF	rc_w0	0x00	刹车中断标记 (Break interrupt flag)
				当刹车输入有效,由硬件对该位置'1'。如果刹车输入无
				效,则该位可由软件清"0"
				0: 无刹车事件产生 1: 刹车输入上检测到有效电平
6	TIF	rc_w0	0x00	触发器中断标记 (Trigger interrupt flag)
O	111	1C_WO	0,000	当发生触发事件 (当从模式控制器处于除门控模式外的其
				它模式时,在 TRGI 输入端检测到有效边沿,或或门控模
				式下的任一边沿)时由硬件对该位置 1。它由软件清 0。
				0 : 无触发器事件产生
				1: 触发器中断等待响应
5	COMIF	rc_w0	0x00	COM 中断标记 (COM interrupt flag)
				当产生 COM 事件 (当捕获/比较控制位: CCxE、CCxNE、
				OCxM 已被更新) 时该位由硬件置 1。它由软件清 0。
				0: 无 COM 事件产生
				1: COM 中断等待响应
4	CC4IF	rc_w0	0x00	捕获/比较 4 中断标记 (Capture/Compare 4 interrupt flag)
	00015		0.00	参考 CC1IF 描述。
3	CC3IF	rc_w0	0x00	捕获/比较 3 中断标记 (Capture/Compare 3 interrupt flag)
				参考 CC1IF 描述。

Bit	Field	Туре	Reset	Description
2	CC2IF	rc_w0	0x00	捕获/比较 2 中断标记 (Capture/Compare 2 interrupt flag) 参考 CC1IF 描述。
1	CC1IF	rc_w0	0x00	捕获/比较 1 中断标记 (Capture/Compare 1 interrupt flag) 如果通道 CC1 配置为输出模式: 当计数器值与比较值匹配时该位由硬件置'1',但在中心对称模式下除外(参考 TIMx_CR1 寄存器的 CMS 位)。它由软件清'0'。 0: 无匹配发生 1: TIMx_CNT 的值与 TIMx_CCR1 的值匹配如果通道 CC1 配置为输入模式: 当捕获事件发生时该位由硬件置'1',它由软件清 0 或通过读 TIMx_CCR1 清'0'。 0: 无输入捕获产生 1: 计数器值已被捕获(拷贝)至 TIMx_CCR1(在 IC1 上检测到与所选极性相同的边沿)
0	UIF	rc_w0	0x00	更新中断标记 (Update interrupt flag) 当产生更新事件时该位由硬件置'1'。它由软件清'0'。 0: 无更新事件产生 1:更新事件等待响应。当寄存器被更新时该位由硬件置'1': - 若 TIMx_CR1 寄存器的 UDIS = 0, 当 REP_CNT = 0 时产生更新事件 (重复向下计数器上溢或下溢时) - 若 TIMx_CR1 寄存器的 UDIS = 0、URS = 0, 当 TIMx_EGR 寄存器的 UG = 1 时产生更新事件 (软件对计数器 CNT 重新初始化) - 若 TIMx_CR1 寄存器的 UDIS = 0、URS = 0,当计数器 CNT 被触发事件重初始化时产生更新事件。(参考同步控制寄存器的说明)

15.4.6 事件产生寄存器 (TIMx_EGR)

偏移地址: 0x14

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved											CC5G			
															W
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Res	served				BG	TG	COMG	CC4G	CC3G	CC2G	CC1G	UG
								w	W	w	w	w	w	w	w

Bit	Field	Туре	Reset	Description
31: 17	Reserved			保留,始终读为0
16	CC5G	W	0x00	产生捕获/比较 5 事件(Capture/Compare 5 generation) 参考 CC1G 描述。
15: 8	Reserved			保留,始终读为0
7	BG	W	0x00	产生刹车事件 (Break generation) 该位由软件置 '1',用于产生一个刹车事件,由硬件自动清 '0'。 0:无动作 1:产生一个刹车事件。此时 MOE = 0、BIF = 1,若开启对应的中断和 DMA,则产生相应的中断和 DMA
6	TG	W	0x00	产生触发事件 (Trigger generation) 该位由软件置'1',用于产生一个触发事件,由硬件自动清'0'。 0:无动作 1:TIMx_SR 寄存器的 TIF = 1,若开启对应的中断和 DMA,则产生相应的中断和 DMA
5	COMG	W	0x00	捕获/比较事件,产生控制更新 (Capture/Compare control update generation) 该位由软件置 '1',由硬件自动清 '0'。 0:无动作 1:当 CCPC = 1,允许更新 CCxE、CCxNE、OCxM 位注:该位只对拥有互补输出的通道有效。
4	CC4G	w	0x00	产生捕获/比较 4 事件 (Capture/Compare 4 generation) 参考 CC1G 描述。
3	CC3G	W	0x00	产生捕获/比较 3 事件 (Capture/Compare 3 generation) 参考 CC1G 描述。
2	CC2G	W	0x00	产生捕获/比较 2 事件 (Capture/Compare 2 generation) 参考 CC1G 描述。
1	CC1G	W	0x00	产生捕获/比较 1 事件 (Capture/Compare 1 generation) 该位由软件置 1,用于产生一个捕获/比较事件,由硬件自动清 0。 0: 无动作 1: 在通道 CC1 上产生一个捕获/比较事件: 若通道 CC1 配置为输出: 设置 CC1IF=1,若开启对应的中断和 DMA,则产生相应的中断和 DMA。 若通道 CC1 配置为输入: 当前的计数器值被捕获至 TIMx_CCR1 寄存器,设置 CC1IF = 1,若开启对应的中断和 DMA,则产生相应的中断和 DMA。对 CC1IF = 1,若开启对应的中断和 DMA,则产生相应的中断和 DMA。若 CC1IF 已经为 1,则设置 CC1OF = 1。

Bit	Field	Туре	Reset	Description
0	UG	W	0x00	产生更新事件 (Update generation)
				该位由软件置'1',由硬件自动清'0'。
				0: 无动作
				1: 重新初始化计数器,并产生一个更新事件。注意预分频
				器的计数器也被清'0'(但是预分频系数不变)。若在中心
				对称模式下或 DIR = 0(向上计数) 则计数器被清'0';若
				DIR = 1(向下计数)则计数器取 TIMx_ARR 的值。

15.4.7 捕获/比较模式寄存器 1(TIMx_CCMR1)

偏移地址: 0x18 复位值: 0x0000

通道可用于输入 (捕获模式) 或输出 (比较模式),通道的方向由相应的 CCxS 定义。该寄存器其他位的作用和输出模式下不同。OCxx 描述了通道在输出模式下的功能,ICxx 描述了通道在输出模式下的功能。因此必须注意,同一个位在输出模式和输入模式下的功能是不同的。

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
OC2 CE	С	C2M		OC2 PE	OC2 FE	00	CC2S		OC1M			OC1 PE	OC1 FE	CC1S		
	IC2F			IC2F	PSC		,25		IC	1F		IC1	PSC		715	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	

输出比较模式:

Bit	Field	Type	Reset	Description
15	OC2CE	rw	0x00	输出比较 2 清 0 使能 (Output compare 2 clear enable)
14: 12	OC2M	rw	0x00	输出比较 2 模式 (Output compare 2 mode)
11	OC2PE	rw	0x00	输出比较 2 预装载使能 (Output compare 2 preload en-
				able)
10	OC2FE	rw	0x00	输出比较 2 快速使能 (Output compare 4 fast enable)
9: 8	CC2S	rw	0x00	捕获/比较 2 选择 (Capture/Compare 2 selection)
				该位定义通道的方向(输入/输出),及输入脚的选择:
				00: CC2 通道被配置为输出
				01: CC2 通道被配置为输入,IC2 映射在 TI2 上
				10: CC2 通道被配置为输入,IC2 映射在 TI1 上
				11: CC2 通道被配置为输入, IC2 映射在 TRC 上。此模式
				仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存
				器的 TS 位选择)
				注:CC2S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC2E = 0)
				才是可写的。

Bit	Field	Туре	Reset	Description
7	OC1CE	rw	0x00	输出比较 1 清 0 使能 (Output compare 1 clear enable) 0: OC1REF 不受 ETRF 输入的影响 1: 当检测到 ETRF 输入高电平时,清除 OC1REF = 0
6: 4	OC1M	rw	0x00	1: 当極测到EIRF 输入高电平时,淯除 OC1REF = 0 输出比较 1 模式 (Output compare 1 mode) 该 3 位定义了输出参考信号 OC1REF 的动作,而 OC1REF 决定了 OC1、OC1N 的值。OC1REF 是高电平有效,而 OC1、OC1N 的有效电平取决于 CC1P、CC1NP 位。 000: 冻结。输出比较寄存器 TIMx_CCR1 与计数器 TIMx_CNT 间的比较对 OC1REF 不起作用 001: 匹配时设置通道 1 为有效电平。当计数器 TIMx_CNT 的值与捕获/比较寄存器 1(TIMx_CCR1) 相同时,强制 OC1REF 为高 010: 匹配时设置通道 1 为无效电平。当计数器 TIMx_CNT 的值与捕获/比较寄存器 1(TIMx_CCR1) 相同时,强制 OC1REF 为低 011: 翻转。当 TIMx_CCR1=TIMx_CNT 时,翻转 OC1REF 的电平 100: 强制为无效电平。强制 OC1REF 为低 101: 强制为有效电平。强制 OC1REF 为高 110: PWM 模式 1 - 在向上计数时,当 TIMx_CNT < TIMx_CCR1 时通道 1 为有效电平,否则为无效电平;在向下计数时,当 TIMx_CNT > TIMx_CCR1 时通道 1 为无效电平 (OC1REF = 1) 111: PWM 模式 2 - 在向上计数时,当 TIMx_CNT < TIMx_CCR1 时通道 1 为无效电平,否则为有效电平;在向下计数时,当 TIMx_CNT > TIMx_CCR1 时通道 1 为有效电平,否则为有效电平;在向下计数时,当 TIMx_CNT > TIMx_CCR1 时通道 1 为有效电平,否则为无效电平;注 1: 当 LOCK 级别设为 3(TIMx_BDTR 寄存器中的 LOCK 位)并且 CC1S = 00(该通道配置成输出)时,该位不能被修改。注 2: 在 PWM 模式 1 或 PWM 模式 2 中,只有当比较结果改变了或在输出比较模式中从冻结模式切换到 PWM 模式时,OC1REF电平才改变。

Bit	Field	Туре	Reset	Description
3	OC1PE	rw	0x00	输出比较 1 预装载使能 (Output compare 1 preload enable) 0: 禁止 TIMx_CCR1 寄存器的预装载功能,可随时写入 TIMx_CCR1 寄存器,并且新写入的数值立即起作用 1: 开启 TIMx_CCR1 寄存器的预装载功能,读写操作仅对 预装载寄存器操作,TIMx_CCR1 的预装载值在更新事件到 来时被加载至当前寄存器中 注 1: 当 LOCK 级别设为 3(TIMx_BDTR 寄存器中的 LOCK 位) 并且 CC1S = 00(该通道配置成输出)时,该位不能被修改。 注 2: 仅在单脉冲模式下 (TIMx_CR1 寄存器的 OPM = 1),可以 在未确认预装载寄存器情况下使用 PWM 模式,否则其动作不确定。
2	OC1FE	rw	0x00	输出比较 1 快速使能 (Output compare 1 fast enable) 该位用于加快 CC 输出对触发输入事件的响应。 0: 根据计数器与 CCR1 的值,CC1 正常操作,即使触发器是打开的。当触发器的输入有一个有效沿时,激活 CC1 输出的最小延时为 5 个时钟周期 1:输入到触发器的有效沿的作用就象发生了一次比较匹配。因此,OC 被设置为比较电平而与比较结果无关。采样触发器的有效沿和 CC1 输出间的延时被缩短为 3 个时钟周期。OCFE 只在通道被配置成 PWM1 或 PWM2 模式时起作用
1: 0	CC1S	rw	0x00	捕获/比较 1 选择 (Capture/Compare 1 selection) 这 2 位定义通道的方向 (输入/输出),及输入脚的选择: 00: CC1 通道被配置为输出 01: CC1 通道被配置为输入,IC1 映射在 TI1 上 10: CC1 通道被配置为输入,IC1 映射在 TI2 上 11: CC1 通道被配置为输入,IC1 映射在 TRC 上,此模式仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存器的 TS 位选择) 注: CC1S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC1E = 0) 才是可写的。

输入捕获模式:

Bit	Field	Туре	Reset	Description
15: 12	IC2F	rw	0x00	输入捕获 2 滤波器 (Input capture 2 filter)
11: 10	IC2PSC	rw	0x00	输入/捕获 2 预分频器 (Input capture 2 prescaler)

Bit	Field	Туре	Reset	Description
9: 8	CC2S	ΓW	0x00	捕获/比较 2 选择 (Capture/Compare 2 selection) 这 2 位定义通道的方向 (输入/输出),及输入脚的选择: 00: CC2 通道被配置为输出 01: CC2 通道被配置为输入,IC2 映射在 TI2 上 10: CC2 通道被配置为输入,IC2 映射在 TI1 上 11: CC2 通道被配置为输入,IC2 映射在 TRC 上,此模式仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存器的 TS 位选择) 注: CC2S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC2E = 0) 才是可写的。
7: 4	IC1F	ΓW	0x00	输入捕获 1 滤波器 (Input capture 1 filter) 这几位定义了 TI1 输入的采样频率及数字滤波器长度。数字滤波器由一个事件计数器组成,它记录到 N 个事件后会产生一个输出的跳变: 0000: 无滤波器,以 fDTS 采样 1000: 采样频率 f _{SAMPLING} =f _{DTS} /8, N = 6 0001: 采样频率 f _{SAMPLING} =f _{CK_INT} , N = 2 1001: 采样频率 f _{SAMPLING} =f _{CK_INT} , N = 4 1010: 采样频率 f _{SAMPLING} =f _{CK_INT} , N = 4 1010: 采样频率 f _{SAMPLING} =f _{DTS} /16, N = 5 0011: 采样频率 f _{SAMPLING} =f _{DTS} /16, N = 6 0100: 采样频率 f _{SAMPLING} =f _{DTS} /2, N = 6 1100: 采样频率 f _{SAMPLING} =f _{DTS} /2, N = 8 1011: 采样频率 f _{SAMPLING} =f _{DTS} /32, N = 8 1101: 采样频率 f _{SAMPLING} =f _{DTS} /32, N = 6 1110: 采样频率 f _{SAMPLING} =f _{DTS} /4, N = 6 1110: 采样频率 f _{SAMPLING} =f _{DTS} /32, N = 6 0111: 采样频率 f _{SAMPLING} =f _{DTS} /32, N = 6
3: 2	IC1PSC	rw	0x00	输入/捕获 1 预分频器 (Input capture 1 prescaler) 这 2 位定义了 CC1 输入 (IC1) 的预分频系数。 当 CC1E = 0(TIMx_CCER 寄存器中) 时,预分频器复位。 00: 无预分频器,捕获输入口上检测到的每一个边沿都触发一次捕获 01: 每 2 个事件触发一次捕获 10: 每 4 个事件触发一次捕获 11: 每 8 个事件触发一次捕获

Bit	Field	Туре	Reset	Description
1: 0	CC1S	rw	0x00	捕获/比较 1 选择 (Capture/compare 1 selection)
				这 2 位定义通道的方向 (输入/输出),及输入脚的选择:
				00: CC1 通道被配置为输出
				01: CC1 通道被配置为输入,IC1 映射在 TI1 上
				10: CC1 通道被配置为输入,IC1 映射在 TI2 上
				11: CC1 通道被配置为输入,IC1 映射在 TRC 上,此模式
				仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存
				器的 TS 位选择)
				注: CC1S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC1E = 0)
				才是可写的。

15.4.8 捕获/比较模式寄存器 2(TIMx_CCMR2)

偏移地址: 0x1C 复位值: 0x0000

参看以上 CCMR1 寄存器的描述。

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OC4 CE	(OC4M		OC4 PE	OC4 FE	00	.40	OC3 CE		ОС3М		OC3 PE	OC3 FE	0	000
IC4F		IC4F	PSC		:4S		I	C3F		IC3I	PSC	C	C3S		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

输出比较模式

Bit	Field	Туре	Reset	Description
15	OC4CE	rw	0x00	输出比较 4 清 0 使能 (Output compare 4 clear enable)
14: 12	OC4M	rw	0x00	输出比较 4 模式 (Output compare 4 mode)
11	OC4PE	rw	0x00	输出比较 4 预装载使能 (Output compare 4 preload enable)
10	OC4FE	rw	0x00	输出比较 4 快速使能 (Output compare 4 fast enable)
9: 8	CC4S	rw	0x00	捕获/比较 4 选择 (Capture/Compare 4 selection) 该 2 位定义通道的方向 (输入/输出),及输入脚的选择: 00: CC4 通道被配置为输出 01: CC4 通道被配置为输入,IC4 映射在 TI4 上 10: CC4 通道被配置为输入,IC4 映射在 TI3 上 11: CC4 通道被配置为输入,IC4 映射在 TRC 上,此模式仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存器的 TS 位选择) 注: CC4S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC4E = 0) 才是可写的。
7	OC3CE	rw	0x00	输出比较 3 清 '0' 使能 (Output compare 3 clear enable)
6: 4	OC3M	rw	0x00	输出比较 3 模式 (Output compare 3 mode)

Bit	Field	Type	Reset	Description
3	OC3PE	rw	0x00	输出比较 3 预装载使能 (Output compare 3 preload en-
				able)
2	OC3FE	rw	0x00	输出比较 3 快速使能 (Output compare 3 fast enable)
1: 0	CC3S	rw	0x00	捕获/比较 3 选择 (Capture/Compare 3 selection)
				这 2 位定义通道的方向 (输入/输出),及输入脚的选择:
				00: CC3 通道被配置为输出
				01: CC3 通道被配置为输入, IC3 映射在 TI3 上
				10: CC3 通道被配置为输入,IC3 映射在 TI4 上
				11: CC3 通道被配置为输入, IC3 映射在 TRC 上, 此模式
				仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存
				器的 TS 位选择)
				注: CC3S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC3E = 0)
				才是可写的。

输入捕获模式

Bit	Field	Туре	Reset	Description
15: 12	IC4F	rw	0x00	输入捕获 4 滤波器 (Input capture 4 filter)
11: 10	IC4PSC	rw	0x00	输入/捕获 4 预分频器 (Input capture 4 prescaler)
9: 8	CC4S	rw	0x00	捕获/比较 4 选择 (Capture/Compare 4 selection)
				这 2 位定义通道的方向 (输入/输出),及输入脚的选择: 00: CC4 通道被配置为输出
				01: CC4 通道被配置为输入,IC4 映射在 TI4 上
				10: CC4 通道被配置为输入,IC4 映射在 TI3 上
				11: CC4 通道被配置为输入, IC4 映射在 TRC 上, 此模式
				仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存
				器的 TS 位选择)
				注:CC4S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC4E = 0)
				才是可写的。
7: 4	IC3F	rw	0x00	输入捕获 3 滤波器 (Input capture 3 filter)
3: 2	IC3PSC	rw	0x00	输入/捕获 3 预分频器 (Input capture 3 prescaler)
1: 0	CC3S	rw	0x00	捕获/比较 3 选择 (Capture/compare 3 selection)
				这 2 位定义通道的方向 (输入/输出),及输入脚的选择:
				00: CC3 通道被配置为输出
				01: CC3 通道被配置为输入, IC3 映射在 TI3 上
				10: CC3 通道被配置为输入,IC3 映射在 TI4 上
				11: CC3 通道被配置为输入,IC3 映射在 TRC 上,此模式
				仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存
				器的 TS 位选择)
				注: CC3S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC3E = 0)
				才是可写的。

15.4.9 捕获/比较使能寄存器 (TIMx_CCER)

偏移地址: 0x20

3	1 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved													CC5P	CC5E
														rw	rw
15	5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	Reserved	CC4P	CC4E	CC3 NP	CC3 NE	ССЗР	CC3E	CC2 NP	CC2 NE	CC2P	CC2E	CC1 NP	CC1 NE	CC1P	CC1E
		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

	et da	-	D(Para della d
Bit	Field	Туре	Reset	Description
31: 18	Reserved			保留,始终读为0
17	CC5P	rw	0x00	输入/捕获 5 输出极性 (Capture/Compare 5 output polarity)
				参考 CC1P 的描述。
16	CC5E	rw	0x00	输入/捕获 5 输出使能 (Capture/Compare 5 output enable)
				参考 CC1E 的描述。
15: 14	Reserved			保留,始终读为0
13	CC4P	rw	0x00	输入/捕获 4 输出极性 (Capture/Compare 4 output polarity)
				参考 CC1P 的描述。
12	CC4E	rw	0x00	输入/捕获 4 输出使能 (Capture/Compare 4 output enable)
				参考 CC1E 的描述。
11	CC3NP	rw	0x00	输入/捕获 3 互补输出极性 (Capture/Compare 3 comple-
				mentary output polarity)
				参考 CC1NP 的描述。
10	CC3NE	rw	0x00	输入/捕获 3 互补输出使能 (Capture/Compare 3 comple-
				mentary output enable)
				参考 CC1NE 的描述。
9	CC3P	rw	0x00	输入/捕获 3 输出极性 (Capture/Compare 3 output polarity)
				参考 CC1P 的描述。
8	CC3E	rw	0x00	输入/捕获 3 输出使能 (Capture/Compare 3 output enable)
				参考 CC1E 的描述。
7	CC2NP	rw	0x00	输入/捕获 2 互补输出极性 (Capture/Compare 2 comple-
				mentary output polarity)
				参考 CC1NP 的描述。
6	CC2NE	rw	0x00	输入/捕获 2 互补输出使能 (Capture/Compare 2 comple-
				mentary output enable)
				参考 CC1NE 的描述。
5	CC2P	rw	0x00	输入/捕获 2 输出极性 (Capture/Compare 2 output polarity)
				参考 CC1P 的描述。
4	CC2E	rw	0x00	输入/捕获 2 输出使能 (Capture/Compare 2 output enable)
				参考 CC1E 的描述。

Bit	Field	Туре	Reset	Description
3	CC1NP	rw	0x00	输入/捕获 1 互补输出极性 (Capture/Compare 1 complementary output polarity) 0: OC1N 高电平有效 1: OC1N 低电平有效 注: 当 LOCK 级别 (TIMx_BDTR 寄存器中的 LCCK 位) 设为 3 或 2 且 CC1S = 00(通道配置为输出) 时,该位不能被修改。
2	CC1NE	rw	0x00	输入/捕获 1 互补输出使能 (Capture/Compare 1 complementary output enable) 0: 关闭 - OC1N 禁止输出,因此 OC1N 的输出电平依赖于 MOE、OSSI、OSSR、OIS1、OIS1N 和 CC1E 位的值 1: 开启 - OC1N 信号输出到对应的输出引脚,其输出电平 依赖于 MOE、OSSI、OSSR、OIS1、OIS1N 和 CC1E 位的值
1	CC1P	rw	0x00	输入/捕获 1 输出极性 (Capture/Compare 1 output polarity) CC1 通道配置为输出: 0: OC1 高电平有效 1: OC1 低电平有效 CC1 通道配置为输入: CC1NP/CC1P 位可针对触发或捕获操作选择 TI1FP1 和 TI2FP1 的有效极性。 00: 非反相/上升沿触发 电路对 TIxFP1 上升沿敏感 (在复位模式、外部时钟模式或触发模式下执行捕获或触发操作),TIxFP1 未反相 (在门控模式或编码器模式下执行触发操作)。 01: 反相/下降沿触发 电路对 TIxFP1 下降沿敏感 (在复位模式、外部时钟模式或触发模式下执行捕获或触发操作),TIxFP1 反相 (在门控模式或编码器模式下执行触发操作)。 10: 保留,不使用此配置。 11: 未反相/边沿触发 电路对 TIxFP1 上升沿和下降沿都敏感 (在复位模式、外部时钟模式或触发模式下执行捕获或触发操作),TIxFP1 未反相 (在门控模式或编码器模式下执行捕获或触发操作)。编码器模式下执行抽发发电路对 TIxFP1 上升沿和下降沿都敏感 (在复位模式、外部时钟模式或触发模式下执行捕获或触发操作),TIxFP1 未反相 (在门控模式或编码器模式下执行触发操作)。编码器模式下不得使用此配置。 注 1: 此位将在具有互补输出的通道上进行预装载。如果TIMx_CR2 寄存器中的 CCPC 位置 1,则仅当生成换向事件时,CC1P有效位才会从预装载位获取新值。 注 2: 只要编程了 LOCK 级别 (TIMx_BDTR 寄存器中的 LCCK 位) 为 3 或 2,该位不能被修改。

Bit	Field	Туре	Reset	Description
0	CC1E	rw	0x00	输入/捕获 1 输出使能 (Capture/Compare 1 output enable)
				CC1 通道配置为输出:
				0: 关闭 - OC1 禁止输出,因此 OC1 的输出电平依赖于
				MOE、OSSI、OSSR、OIS1、OIS1N 和 CC1NE 位的值
				1: 开启 - OC1 信号输出到对应的输出引脚, 其输出电平依
				赖于 MOE、OSSI、OSSR、OIS1、OIS1N 和 CC1NE 位
				的值
				CC1 通道配置为输入:
				该位决定了计数器的值是否能捕获入TIMx_CCR1寄存器。
				0: 捕获禁止
				1: 捕获使能

表 43. 带刹车功能的互补输出通道 OCx 和 OCxN 的控制位

控制位					输出状态 (1)								
MOE 位	OSSI	OSSR	CCxE	CCxNE	OCx 输出状态	OCxN 输出状态							
	位	位	位	位									
		0	0	0	输出禁止 (与定时器断开)	输出禁止 (与定时器断开)							
					OCx = 0, OCx_EN = 0	OCxN = 0, OCxN_EN = 0							
		0	0	1	输出禁止 (与定时器断开)	OCxREF + 极性,							
					OCx = 0, OCx_EN = 0	OCxN = OCxREF xor CCxNP,							
						OCxN_EN = 1							
		0	1	0	OCxREF + 极性,	输出禁止 (与定时器断开)							
					OCx = OCxREF xor CCxP,	OCxN = 0, OCxN_EN = 0							
					OCx_EN = 1								
		0	1	1	OCxREF + 极性 + 死区,	OCxREF 反相 + 极性 + 死区,							
1	Χ				OCx_EN=1	OCxN_EN = 1							
		1	0	0	输出禁止 (与定时器断开)	输出禁止 (与定时器断开) OCxN =							
					OCx = CCxP, OCx_EN = 0	CCxNP, OCxN_EN = 0							
		1	0	1	关闭状态 (输出使能且为无效电	OCxREF + 极性,							
					平)	OCxN = OCxREF xor CCxNP,							
					OCx = CCxP, OCx_EN = 1	OCxN_EN = 1							
		1	1	0	OCxREF + 极性,	关闭状态 (输出使能且为无效							
					OCx = OCxREF xor CCxP,	平)							
					OCx_EN = 1	OCxN = CCxNP, OCxN_EN = 1							
		1	1	1	OCxREF + 极性 + 死区,	OCxREF 反相 + 极性 + 死区,							
					OCx_EN = 1	OCxN_EN = 1							
	0		0	0	输出禁止 (与定时器断开)								
	0		0	1	异步地: OCx = CCxP , OCx_E	EN = 0, $OCxN = CCxNP$,							
	0		1	0	OCxN_EN = 0;								
	0		1	1	若时钟存在:经过一个死区时间	后							
					OCx = OISx, $OCxN = OISxN$,								
0		X			假设 OISx 与 OISxN 并不都对应								
	0		1	关闭状态 (输出使能且为无效电子									
1	-	1	0	异步地: OCx = CCxP,OCx_EN = 1,OCxN = CCxNP, OCxN_EN = 1;									
	1	-	1	1	_ OOM_EN = 1; _ 若时钟存在:经过一个死区时间	后							
	1		1		OCx = OISx ,OCxN = OISxN,	/H							
						OCx = OISx , OCxN = OISxN, 假设 OISx 与 OISxN 并不都对应 OCx 和 OCxN 的有效电平。							

^{1.} 如果一个通道的 2 个输出都没有使用 (CCxE = CCxNE = 0), 那么 OISx, OISxN, CCxP 和 CCxNP 都必须清零。

注: 与互补通道 OCx 和 OCxN 相连的外部 I/O 管脚的状态, 取决于 OCx 和 OCxN 通道状态和 GPIO 寄存器。

15.4.10 计数器 (TIMx_CNT)

偏移地址: 0x24 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CNT								
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bit	Field	Туре	Reset	Description
15: 0	CNT	rw	0x0000	计数器的值 (Counter value)

15.4.11 预分频器 (TIMx_PSC)

偏移地址: 0x28 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PSC								
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bit	Field	Туре	Reset	Description
15: 0	PSC	rw	0x0000	预分频器的值 (Prescaler value)
				计数器的时钟频率 (CK_CNT) 等于 f _{CK_PSC} /(PSC + 1)。
				PSC 包含了每次当更新事件产生时,装入当前预分频器寄
				存器的值。更新事件包括计数器被 TIM_EGR 的 UG 位清
				'0'或被工作在复位模式的从控制器清'0'。

15.4.12 自动装载寄存器 (TIMx_ARR)

偏移地址: 0x2C 复位值: 0x0000

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								ARR								
_	rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bit	Field	Туре	Reset	Description
15: 0	ARR	rw	0x0000	自动重装载的值 (Prescaler value)
				ARR 包含了将要装载入实际的自动重装载寄存器的数值。
				详细参考小节 15.3.1: 有关 ARR 的更新和动作。
				当自动重装载的值为空时,计数器不工作。

15.4.13 重复计数寄存器 (TIMx_RCR)

偏移地址: 0x30

复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Re	eserve	b						REP				
								rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Type	Reset	Description
15: 8	Reserved			保留,始终读为0。
7: 0	REP	rw	0x00	重复计数器的值 (Repetition counter value) 开启了预装载功能后,这些位允许用户设置比较寄存器的更新速率 (即周期性地从预装载寄存器传输到当前寄存器); 如果允许产生更新中断,则会同时影响产生更新中断的速率。 每次向下计数器 REP_CNT 达到 0,会产生一个更新事件并且计数器 REP_CNT 重新从 REP 值开始计数。由于REP_CNT 只有在周期更新事件 U_RC 发生时才重载 REP值,因此对 TIMx_RCR 寄存器写入的新值只在下次周期更新事件发生时才起作用。 这意味着在 PWM 模式中,(REP+1) 对应着: - 在边沿对齐模式下,PWM 周期的数目

15.4.14 捕获/比较寄存器 1(TIMx_CCR1)

偏移地址: 0x34 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CCR1														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
15: 0	CCR1	rw	0x0000	捕获/比较 1 的值 (Capture/Compare 1 value)
				若 CC1 通道配置为输出:
				CCR1 包含了装入当前捕获/比较 1 寄存器的值 (预装载
				值)。
				如果在 TIMx_CCMR1 寄存器 (OC1PE 位) 中未选择预装
				载功能,写入的数值会立即传输至当前寄存器中。否则只有
				当更新事件发生时,此预装载值才传输至当前捕获/比较 1
				寄存器中。当前捕获/比较寄存器参与同计数器 TIMx_CNT
				的比较,并在 OC1 端口上产生输出信号。
				若 CC1 通道配置为输入:
				CCR1 包含了由上一次输入捕获 1 事件 (IC1) 传输的计数
				器值。

15.4.15 捕获/比较寄存器 2(TIMx_CCR2)

偏移地址: 0x38 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CCR2														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
15: 0	CCR2	rw	0x0000	捕获/比较 2 的值 (Capture/Compare 2 value)
				若 CC2 通道配置为输出:
				CCR2 包含了装入当前捕获/比较 2 寄存器的值 (预装载
				值)。
				如果在 TIMx_CCMR2 寄存器 (OC2PE 位) 中未选择预装
				载特性,写入的数值会立即传输至当前寄存器中。否则只有
				当更新事件发生时,此预装载值才传输至当前捕获/比较 2
				寄存器中。当前捕获/比较寄存器参与同计数器 TIMx_CNT
				的比较,并在 OC2 端口上产生输出信号。
				若 CC2 通道配置为输入:
				CCR2 包含了由上一次输入捕获 2 事件 (IC2) 传输的计数
				器值。

15.4.16 捕获/比较寄存器 3(TIMx_CCR3)

偏移地址: 0x3C 复位值: 0x0000

15 14 13 12 11 10 8 6 5 2 0 3 CCR3 rw rw rw rw

Bit	Field	Туре	Reset	Description
15: 0	CCR3	rw	0x0000	捕获/比较 3 的值 (Capture/Compare 3 value)
				若 CC3 通道配置为输出:
				CCR3 包含了装入当前捕获/比较 3 寄存器的值 (预装载
				值)。
				如果在 TIMx_CCMR3 寄存器 (OC3PE 位) 中未选择预装
				载特性,写入的数值会立即传输至当前寄存器中。否则只有
				当更新事件发生时,此预装载值才传输至当前捕获/比较 3
				寄存器中。当前捕获/比较寄存器参与同计数器 TIMx_CNT
				的比较,并在 OC3 端口上产生输出信号。
				若 CC3 通道配置为输入:
				CCR3 包含了由上一次输入捕获 3 事件 (IC3) 传输的计数
				器值。

15.4.17 捕获/比较寄存器 4(TIMx_CCR4)

偏移地址: 0x40

复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CCR4															
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
15: 0	CCR4	rw	0x0000	捕获/比较 4 的值 (Capture/Compare 4 value)
				若 CC4 通道配置为输出:
				CCR4 包含了装入当前捕获/比较 4 寄存器的值 (预装载
				值)。
				如果在 TIMx_CCMR4 寄存器 (OC4PE 位) 中未选择预装
				载特性,写入的数值会立即传输至当前寄存器中。否则只有
				当更新事件发生时,此预装载值才传输至当前捕获/比较 4
				寄存器中。当前捕获/比较寄存器参与同计数器 TIMx_CNT
				的比较,并在 OC4 端口上产生输出信号。
				若 CC4 通道配置为输入:
				CCR4 包含了由上一次输入捕获 4 事件 (IC4) 传输的计数
				器值。

15.4.18 刹车和死区寄存器 (TIMx_BDTR)

偏移地址: 0x44

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reser	ved								DOE
															rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MOE	AOE	BKP	BKE	OSSR	OSSI	LO	LOCK				DT	G			
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

注:根据锁定设置,AOE、BKP、BKE、OSSI、OSSR和DTG位均可被写保护,有必要在第一次写入TIMx_BDTR寄存器时对它们进行配置。

Bit	Field	Туре	Reset	Description
31:17	Reserved			保留,始终读为0。

Bit	Field	Туре	Reset	Description
16	DOE	rw	0x00	直接输出(Direct output enable) 当刹车有效、MOE 置零后,有效。
				1: 立即输出空闲状态,不再等待死区时间后输出。0: 刹车输入后,等待一个死区时间后输出空闲状态。
15	MOE	rw	0x00	主输出使能 (Main output enable) 当刹车输入有效时,该位被硬件异步清'0'。根据 AOE 位的设置值,该位可以由软件清'0'或被自动置'1'。它仅对配置为输出的通道有效。 0: 禁止 OC 和 OCN 输出或强制为空闲状态 1: 如果设置了相应的使能位 (TIMx_CCER 寄存器的CCxE、CCxNE位),则开启 OC 和 OCN 输出有关 OC/OCN 使能的细节,参见小节 15.4.9,捕获/比较使能寄存器 (TIMx_CCER)。
14	AOE	rw	0x00	自动输出使能 (Automatic output enable) 0: MOE 只能被软件置 '1' 1: MOE 能被软件置 '1'或在下一个更新事件被自动置 1(如果刹车输入无效) 注: 当 LOCK 级别 (TIMx_BDTR 寄存器中的 LOCK 位) 设为 1时,该位不能被修改。
13	ВКР	rw	0x00	刹车输入极性 (Break polarity) 0: 刹车输入低电平有效 1: 刹车输入高电平有效 注: 当 LOCK 级别 (TIMx_BDTR 寄存器中的 LOCK 位) 设为 1 时,该位不能被修改。
12	BKE	rw	0x00	刹车功能使能 (Break enable) 0: 禁止刹车输入 (BRK 及 BRK_ACTH) 1: 开启刹车输入 (BRK 及 BRK_ACTH) 注: 当 LOCK 级别 (TIMx_BDTR 寄存器中的 LOCK 位) 设为 1 时,该位不能被修改。
11	OSSR	rw	0x00	运行模式下'关闭状态'选择(Off-state selection for Run mode) 该位用于当 MOE = 1 且通道为互补输出时。没有互补输出的定时器中不存在 OSSR 位。 参考 OC/OCN 使能的详细说明(小节 15.4.9,捕获/比较使能寄存器(TIMx_CCER))。 0: 当定时器不工作时,禁止 OC/OCN 输出(OC/OCN 使能输出信号 = 0) 1: 当定时器不工作时,如果 CCxE = 1 或 CCxNE = 1,首先开启 OC/OCN 并输出无效电平,然后置 OC/OCN 使能输出信号 = 1 注: 当 LOCK 级别(TIMx_BDTR 寄存器中的 LOCK 位)设为 2 时,该位不能被修改。

Bit	Field	Туре	Reset	Description
10	OSSI	rw	0x00	空闲模式下'关闭状态'选择 (Off-state selection for Idle mode) 该位用于当 MOE = 0 且通道设为输出时。 参考 OC/OCN 使能的详细说明 (小节 15.4.9,捕获/比较使能寄存器 (TIMx_CCER))。 0: 当定时器不工作时,禁止 OC/OCN 输出 (OC/OCN 使能输出信号 = 0) 1: 当定时器不工作时,如果 CCxE = 1 或 CCxNE = 1,OC/OCN 首先输出其空闲电平,然后 OC/OCN 使能输出信号 = 1 注: 当 LOCK 级别 (TIMx_BDTR 寄存器中的 LOCK 位) 设为 2时,该位不能被修改。
9: 8	LOCK	rw	0x00	锁定设置 (Lock configuration) 该位为防止软件错误而提供写保护。 00: 锁定关闭,寄存器无写保护 01: 锁定级别 1,不能写入 TIMx_BDTR 寄存器的 DTG、BKE、BKP、AOE 位和 TIMx_CR2 寄存器的 OISx/OISxN 位 10: 锁定级别 2,不能写入锁定级别 1 中的各位,也不能写入 CC 极性位 (当相关通道通过 CCxS 位设为输出时,CC 极性位是 TIMx_CCER 寄存器的 CCxP/CCNxP 位) 以及 OSSR/OSSI 位 11: 锁定级别 3,不能写入锁定级别 2 中的各位,也不能写入 CC 控制位 (当相关通道通过 CCxS 位设为输出时,CC 控制位是 TIMx_CCMRx 寄存器的 OCxM/OCxPE 位) 注:在系统复位后,只能写一次 LOCK 位,当写入 TIMx_BDTR 寄存器时,其内容冻结直至复位。

Bit	Field	Туре	Reset	Description
7: 0	DTG	rw	0x00	死区发生器设置 (Dead-time generator setup)
				这些位定义了插入互补输出之间的死区持续时间。假设 DT
				表示其持续时间:
				DTG[7: 5] = 0xx:
				DT = (DTG[7: 0] + 1) × t_{dtg} , $t_{dtg} = t_{DTS}$;
				DTG[7: 5] = 10x:
				DT = (DTG[5: 0] + 1 + 64) × t_{dtg} , t_{dtg} = 2 × t_{DTS} ;
				DTG[7: 5] = 110:
				DT = (DTG[4: 0] + 1 + 32) × t_{dtg} , t_{dtg} = 8 × t_{DTS} ;
				DTG[7: 5] = 111:
				DT = (DTG[4: 0] + 1 + 32) × t_{dtg} , t_{dtg} = 16 × t_{DTS} ;
				例:若 t _{DTS} = 125ns(8MHz),可能的死区时间为:
				125ns 到 15875ns(步长时间为 125ns),
				16μs 到 31750ns(步长时间为 250ns),
				32μs 到 63μs(步长时间为 1μs),
				64μs 到 126μs(步长时间为 2μs)。
				注: 当 LOCK 级别 (TIMx_BDTR 寄存器中的 LOCK 位) 设为 1、
				2 或 3 时,不能修改这些位。

15.4.19 DMA 控制寄存器 (TIMx_DCR)

偏移地址: 0x48 复位值: 0x0000

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Res.				DBL			Res					DBA		
_				w	W	w	W	w				w	W	w	W	w

Bit	Field	Туре	Reset	Description
15: 13	Reserved			保留,始终读为0。

Bit	Field	Туре	Reset	Description
12: 8	DBL	W	0x00	DMA 连续传送长度 (DMA burst length)
				这些位定义了 DMA 在连续模式下的传送长度 (当对
				TIMx_DMAR 寄存器进行写操作时,定时器则进行一次连
				续传送),即:定义传输的次数,传输可以是半字(双字节)
				或字节:
				00000: 1 次传输 00001: 2 次传输
				00010: 3 次传输 10001: 18 次传输
				10001: 16 公传制
				- 如果 DBL = 7, DBA = TIM2_CR1 表示待传输数据的地址,
				那么传输的地址由下式给出:
				(TIMx_CR1 的地址)+ DBA +(DMA 索引), 其中 DMA 索引
				= DBL
				其中 (TIMx_CR1 的地址)+ DBA 再加上 7,给出了将要写
				入或者读出数据的地址,这样数据的传输将发生在从地址
				(TIMx_CR1 的地址)+ DBA 开始的 7 个寄存器。根据 DMA
				数据长度的设置,可能发生以下情况:
				- 如果设置数据为半字 (16位),那么数据就会传输给全部7
				个寄存器。
				- 如果设置数据为字节,数据仍然会传输给全部7个寄存器:
				第一个寄存器包含第一个 MSB 字节, 第二个寄存器包含第
				一个 LSB 字节,以此类推。因此对于定时器,用户必须指
				定由 DMA 传输的数据宽度。
7: 5	Reserved			保留,始终读为0。
4: 0	DBA	W	0x00	DMA 基地址 (DMA base address) 这些位定义了 DMA 在
				连续模式下的基地址 (当对 TIMx_DMAR 寄存器进行写操
				作时), DBA 定义为从 TIMx_CR1 寄存器所在地址开始的
				偏移量:
				00000: TIMx_CR1
				00001: TIMx_CR2
				00010: TIMx_SMCR

15.4.20 连续模式的 DMA 地址 (TIMx_DMAR)

偏移地址: 0x4C

复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DM	AB							
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w

Bit	Field	Туре	Reset	Description
15: 0	DMAB	W	0x0000	DMA 连续传送寄存器 (DMA register for burst accesses)
				对 TIMx_DMAR 寄存器的写操作会导致对以下地址所在寄
				存器的存取操作:
				TIMx_CR1 地址 + DBA + DMA 索引,其中: 'TIMx_CR1
				地址'是控制寄存器 1(TIMx_CR1) 所在的地址;
				'DBA'是 TIMx_DCR 寄存器中定义的基地址;
				'DMA 索引'是由 DMA 自动控制的偏移量,它取决于
				TIMx_DCR 寄存器中定义的 DBL。

15.4.21 捕获/比较模式寄存器 3(TIMx_CCMR3)

偏移地址: 0x54 复位值: 0x0000

通道仅用于输出 (比较模式)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Res	erved				OC5 CE	(OC5M		OC5 PE	OC5 FE	Rese	erved
								rw		rw		rw	rw		

输出比较模式:

Bit	Field	Туре	Reset	Description
15: 8	Reserved			保留,始终读为0。
7	OC5CE	rw	0x00	输出比较 5 清 '0' 使能 (Output compare 5 clear enable)
6: 4	OC5M	rw	0x00	输出比较 5 模式 (Output compare 5 mode)
3	OC5PE	rw	0x00	输出比较 5 预装载使能 (Output compare 5 preload en-
				able)
2	OC5FE	rw	0x00	输出比较 5 快速使能 (Output compare 5 fast enable)
1: 0	Reserved			保留,始终读为0。

15.4.22 捕获/比较寄存器 5(TIMx_CCR5)

偏移地址: 0x58 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CCR5								
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bit	Field	Туре	Reset	Description
15: 0	CCR5	rw	0x0000	捕获/比较 5 的值 (Capture/Compare 5 value)
				CC5 通道只能配置为输出:
				CCR5 包含了装入当前捕获/比较 5 寄存器的值(预装载
				值)。
				如果在 TIMx_CCMR3 寄存器 (OC5PE 位) 中未选择预装
				载特性,写入的数值会立即传输至当前寄存器中。否则只
				有当更新事件发生时,此预装载值才传输至当前捕获/比较
				5 寄存器中。
				当前捕获/比较寄存器参与同计数器 TIMx_CNT 的比较,并
				在 OC5 端口上产生输出信号。

16

16 位通用定时器 (TIMx16 Bit)

16 位通用定时器 (TIMx16 Bit)

16.1 TIMx 简介

通用定时器是一个通过可编程预分频器驱动的 16 位自动装载计数器构成。它适用于多种场合,包括测量输入信号的脉冲长度 (输入捕获)或者产生输出波形 (输出比较和 PWM)。

使用定时器预分频器和 RCC 时钟控制器预分频器,脉冲长度和波形周期可以在几个微秒 到几个毫秒间调整。

TIMx 定时器是完全独立的,而且没有互相共享任何资源。它们可以一起同步操作。

16.2 TIMx 主要功能

通用 TIMx(TIM3) 定时器功能包括:

- 16 位向上、向下、向上/向下自动装载计数器
- 16 位可编程 (可以实时修改) 预分频器, 计数器时钟频率的分频系数为 1~65536 之间的任意数值
- 4 个独立的通道
 - 输入捕获
 - 输出比较
 - PWM 生成 (边缘或中间对齐模式)
 - 单脉冲模式输出
- 使用外部信号控制定时器和定时器互连的同步电路
- 如下事件发生时产生中断/DMA:
 - 更新: 计数器向上溢出/向下溢出, 计数器初始化 (通过软件或者内部/外部触发)
 - 触发事件(计数器启动、停止、初始化或者由内部/外部触发计数)
 - 输入捕获
 - 输出比较
- 支持针对定位的增量 (正交) 编码器和霍尔传感器电路
- 触发输入作为外部时钟或者按周期的电流管理

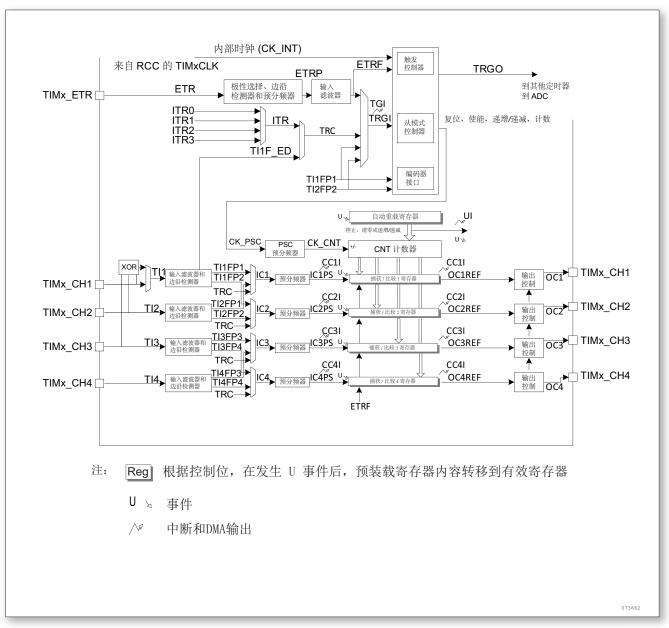


图 80. 通用定时器框图

16.3 TIMx 功能描述

16.3.1 时基单元

可编程通用定时器的主要部分是一个 16 计数器和与其相关的自动装载寄存器。这个计数器可以向上计数、向下计数或者向上向下双向计数。此计数器时钟由预分频器分频得到。 计数器、自动装载寄存器和预分频器寄存器可以由软件读写,在计数器运行时仍可以读写,时基单元包含:

- 计数器寄存器 (TIMx CNT)
- 预分频器寄存器 (TIMx_PSC)
- 自动装载寄存器 (TIMx_ARR)

自动装载寄存器是预先装载的,写或读自动重装载寄存器将访问预装载寄存器。根据在

TIMx_CR1 寄存器中的自动装载预装载使能位 (ARPE) 的设置,预装载寄存器的内容被立即或在每次的更新事件 UEV 时传送到影子寄存器。当计数器达到溢出条件 (向下计数时的下溢条件) 并当 TIMx_CR1 寄存器中的 UDIS 位等于 0 时,产生更新事件。更新事件也可以由软件产生。随后会详细描述每一种配置下更新事件的产生。

计数器由预分频器的时钟输出 CK_CNT 驱动,仅当设置了计数器 TIMx_CR1 寄存器中的 计数器使能位 (CEN) 时, CK_CNT 才有效。(有关计数器使能的细节,请参见控制器的从模式描述)。

预分频器描述

预分频器可以将计数器的时钟频率按 1 ~ 65536 之间的任意值分频。它是基于一个 (在 TIMx_PSC 寄存器中的)16 位寄存器控制的 16 位计数器。因为这个控制寄存器带有缓冲器,它能够在工作时被改变。新的预分频器的参数在下一次更新事件到来时被采用。

下面两个图分别给出了在预分频器运行时,更改计数器参数的例子。

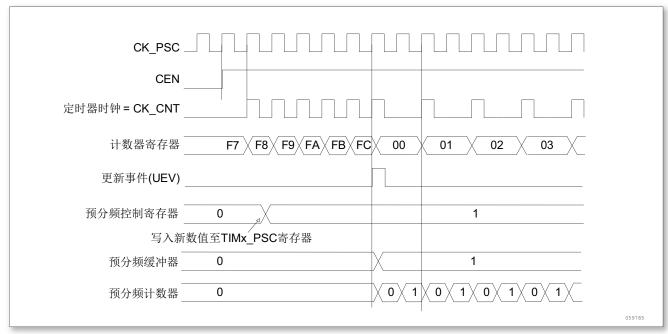


图 81. 当预分频器的参数从 1 变到 2 时, 计数器的时序图

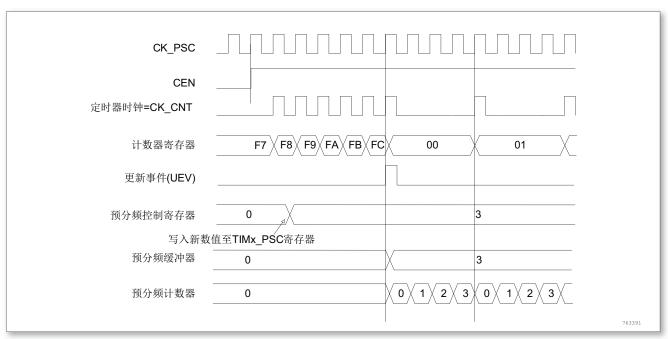


图 82. 当预分频器的参数从 1 变到 4 时, 计数器的时序图

16.3.2 计数模式

向上计数模式

在向上计数模式中,计数器从 0 计数到自动加载值 (TIMx_ARR 计数器的内容),然后重新 从 0 开始计数并且产生一个计数器溢出事件。

每次计数器溢出时可以产生更新事件,在 TIMx_EGR 寄存器中设置 UG 位 (通过软件方式或者使用从模式控制器) 也同样可以产生一个更新事件。

设置 TIMx_CR1 寄存器中的 UDIS 位,可以禁止更新事件;这样可以避免在向预装载寄存器中写入新值时更新影子寄存器。在 UDIS 位被清 0 之前,将不产生更新事件。但是在应该产生更新事件时,计数器仍会被清 0,同时预分频器的计数也被清 0(但预分频器的数值不变)。此外,如果设置了 TIMx_CR1 寄存器中的 URS 位 (选择更新请求),设置 UG 位将产生一个更新事件 UEV,但硬件不设置 UIF 标志 (即不产生中断或 DMA 请求)。这是为了避免在捕获模式下清除计数器时,同时产生更新和捕获中断。

当发生一个更新事件时,所有的寄存器都被更新,硬件同时 (依据 URS 位) 设置更新标志位 (TIMx_SR 寄存器中的 UIF 位)。

- 预分频器的缓冲区被置入预装载寄存器的值 (TIMx_PSC 寄存器的内容)
- 自动装载影子寄存器被重新置入预装载寄存器的值 (TIMx ARR)

下图给出一些例子,当 TIMx ARR = 0x36 时计数器在不同时钟频率下的动作:

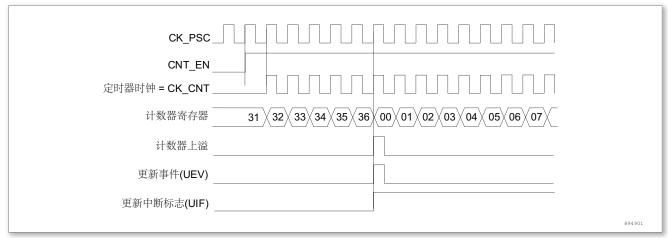


图 83. 计数器时序图,内部时钟分频因子为 1

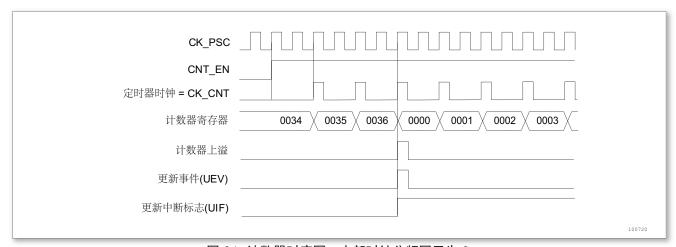


图 84. 计数器时序图,内部时钟分频因子为 2

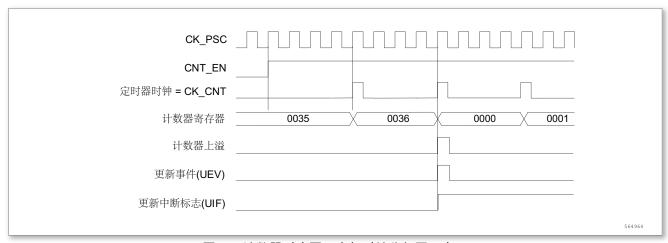


图 85. 计数器时序图,内部时钟分频因子为 4

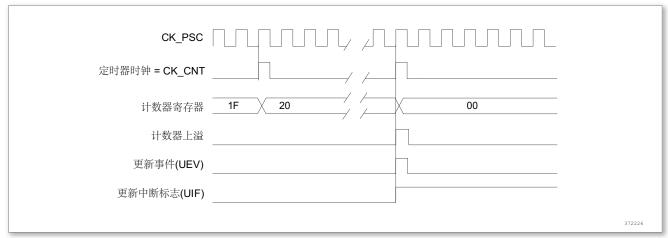


图 86. 计数器时序图,内部时钟分频因子为 N

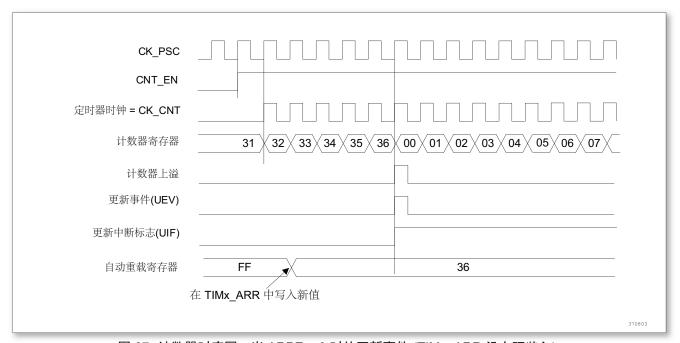


图 87. 计数器时序图, 当 ARPE = 0 时的更新事件 (TIMx_ARR 没有预装入)

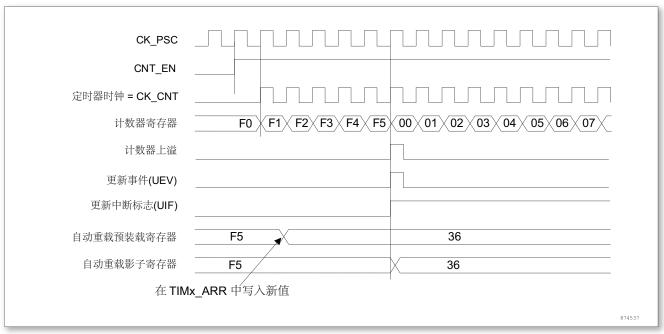


图 88. 计数器时序图, 当 ARPE = 1 时的更新事件 (预装入了 TIMx ARR)

向下计数模式

在向下模式中,计数器从自动装入的值 (TIMx_ARR 计数器的值) 开始向下计数到 0,然后从自动装入的值重新开始并且产生一个计数器向下溢出事件。

每次计数器溢出时可以产生更新事件,在 TIMx_EGR 寄存器中设置 UG 位 (通过软件方式或者使用从模式控制器) 也同样可以产生一个更新事件。

设置 TIMx_CR1 寄存器的 UDIS 位可以禁止 UEV 事件。这样可以避免向预装载寄存器中写入新值时更新影子寄存器。因此 UDIS 位被清为 0 之前不会产生更新事件。然而,计数器仍会从当前自动加载值重新开始计数,同时预分频器的计数器重新从 0 开始 (但预分频器的速率不能被修改)。

此外,如果设置了 TIMx_CR1 寄存器中的 URS 位 (选择更新请求),设置 UG 位将产生一个更新事件 UEV 但不设置 UIF 标志 (因此不产生中断和 DMA 请求),这是为了避免在发生捕获事件并清除计数器时,同时产生更新和捕获中断。

当发生更新事件时,所有的寄存器都被更新,并且(根据 URS 位的设置)更新标志位(TIMx_SR 寄存器中的 UIF 位)也被设置。

- 预分频器的缓存器被置入预装载寄存器的值 (TIMx_PSC 寄存器的值)。
- 当前的自动加载寄存器被更新为预装载值 (TIMx_ARR 寄存器中的内容)。

注: 自动装载在计数器重载入之前被更新, 因此下一个周期将是预期的值。

以下是一些当 TIMx_ARR = 0x36 时, 计数器在不同时钟频率下的操作实例:

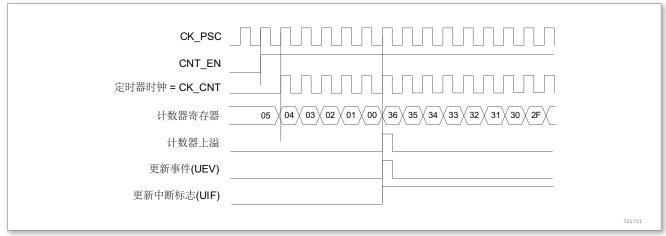


图 89. 计数器时序图,内部时钟分频因子为 1

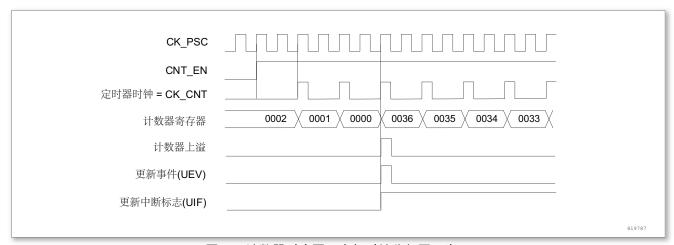


图 90. 计数器时序图,内部时钟分频因子为 2

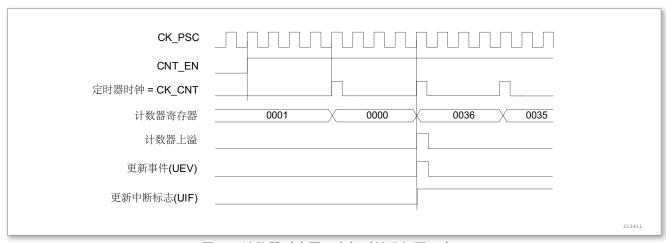


图 91. 计数器时序图,内部时钟分频因子为 4

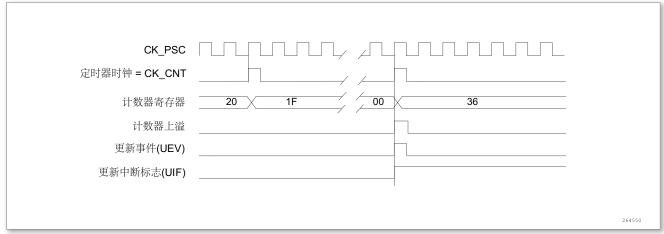


图 92. 计数器时序图,内部时钟分频因子为 N

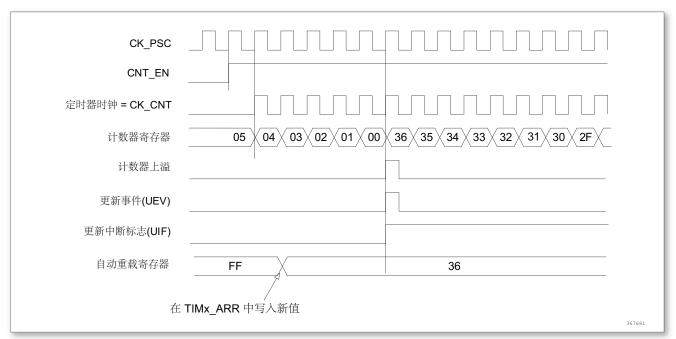


图 93. 计数器时序图, 当没有使用重复计数器时的更新事件

中央对齐模式 (向上/向下计数)

在中央对齐模式,计数器从 0 开始计数到自动加载的值 (TIMx_ARR 寄存器)-1,产生一个计数器溢出事件,然后向下计数到 1 并且产生一个计数器下溢事件;然后再从 0 开始重新计数。

在这个模式,不能写入 TIMx_CR1 中的 DIR 方向位。它由硬件更新并指示当前的计数方向。更新事件可以产生在每次计数溢出和每次计数下溢;也可以通过(软件或者使用从模式控制器)设置 TIMx_EGR 寄存器中的 UG 位产生,此时,计数器重新从 0 开始计数,预分频器也重新从 0 开始计数。

设置 TIMx_CR1 寄存器中的 UDIS 位可以禁止 UEV 事件。这样可以避免在向预装载寄存器中写入新值时更新影子寄存器。因此 UDIS 位被清为 0 之前不会产生更新事件。然而, 计数器仍会根据当前自动重加载的值,继续向上或向下计数。

此外,如果设置了 TIMx_CR1 寄存器中的 URS 位 (选择更新请求),设置 UG 位将产生一个更新事件 UEV 但不设置 UIF 标志 (因此不产生中断和 DMA 请求),这是为了避免在发生

捕获事件并清除计数器时,同时产生更新和捕获中断。

当发生更新事件时,所有的寄存器都被更新,并且(根据 URS 位的设置)更新标志位(TIMx_SR 寄存器中的 UIF 位)也被设置。

- 预分频器的缓存器被加载为预装载 (TIMx_PSC 寄存器) 的值
- 当前的自动加载寄存器被更新为预装载值 (TIMx ARR 寄存器中的内容)

注:如果因为计数器溢出而产生更新,自动重装载将在计数器重载入之前被更新,因此下一个周期将是预期的值(计数器被装载为新的值)。

以下是一些计数器在不同时钟频率下的操作的例子:

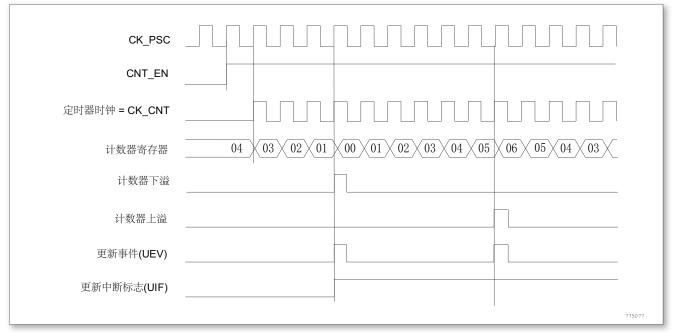


图 94. 计数器时序图,内部时钟分频因子为 1, TIMx_ARR = 0x6

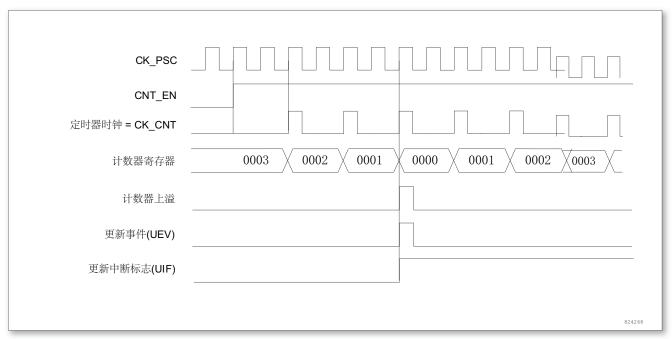


图 95. 计数器时序图,内部时钟分频因子为 2

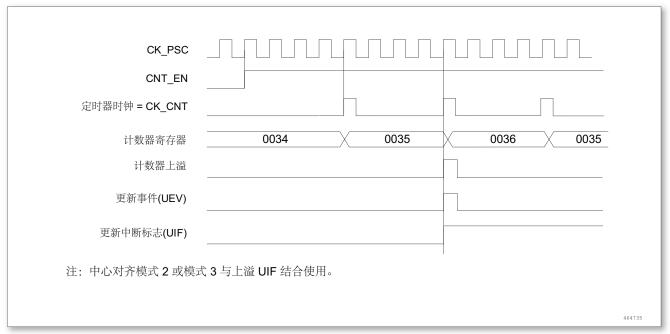


图 96. 计数器时序图,内部时钟分频因子为 4,TIMx_ARR = 0x36

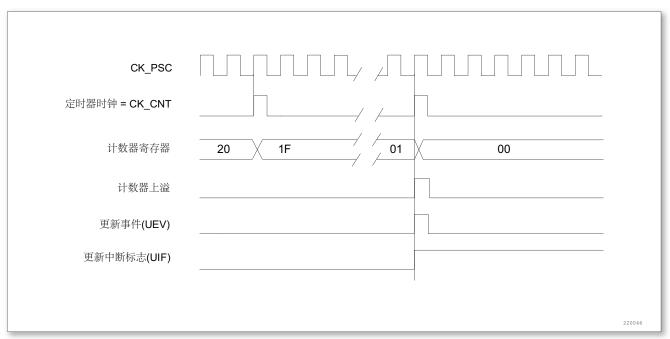


图 97. 计数器时序图,内部时钟分频因子为 N

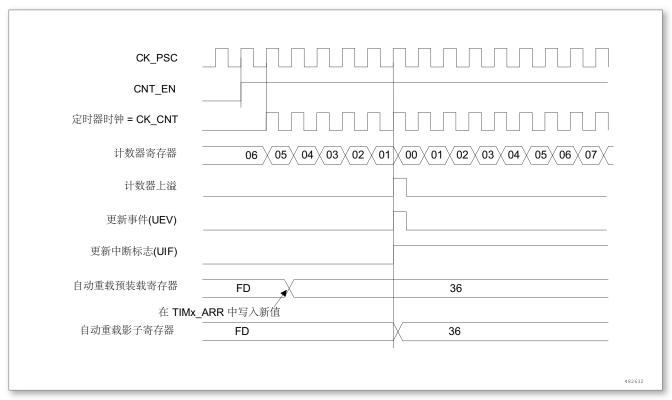


图 98. 计数器时序图, ARPE = 1 时的更新事件 (计数器下溢)

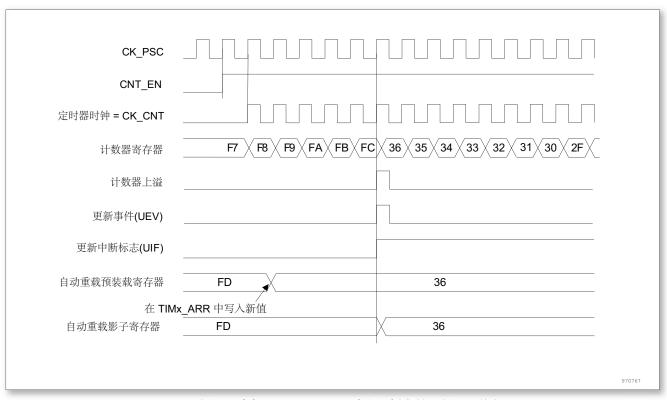


图 99. 计数器时序图, ARPE = 1 时的更新事件 (计数器溢出)

16.3.3 时钟选择

计数器时钟可由下列时钟源提供:

• 内部时钟 (CK_INT)

- 外部时钟模式 1: 外部输入脚 (Tlx)
- 外部时钟模式 2: 外部触发输入 (ETR)
- 内部触发输入 (ITRx): 使用一个定时器作为另一个定时器的预分频器,如可以配置一个定时器 Timer1 作为另一个定时器 Timer2 的预分频器。

内部时钟源 (CK_INT)

如果禁止了从模式控制器 (SMS = 000),则 CEN、DIR(TIMx_CR1 寄存器)和 UG 位 (TIMx_EGR 寄存器)是事实上的控制位,并且只能被软件修改 (UG 位仍被自动清除)。当 CEN 位被写成 1 时,预分频器的时钟由内部时钟 CK_INT 提供。

下图显示了控制电路和向上计数器在一般模式下,不带预分频器时的操作。

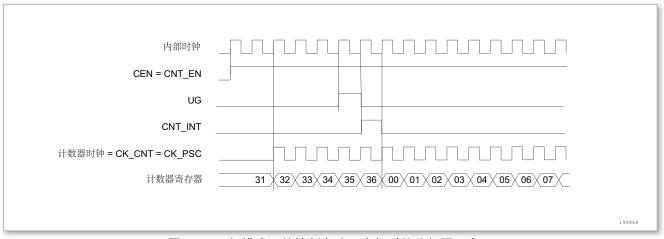


图 100. 一般模式下的控制电路,内部时钟分频因子为 1

外部时钟源模式 1

当 TIMx_SMCR 寄存器的 SMS = 111 时,此模式被选中。计数器可以在选定输入端的每个上升沿或下降沿计数。

图 101. TI2 外部时钟连接例子

例如,要配置向上计数器在 T12 输入端的上升沿计数,使用下列步骤:

- 1. 配置 TIMx CCMR1 寄存器 CC2S = 01, 配置通道 2 检测 TI2 输入的上升沿
- 2. 配置 TIMx_CCMR1 寄存器的 IC2F[3: 0], 选择输入滤波器带宽 (如果不需要滤波器, 保持 IC2F = 0000)

注: 捕获预分频器不用作触发, 所以不需要对它进行配置

- 3. 配置 TIMx CCER 寄存器的 CC2P = 0, 选定上升沿极性
- 4. 配置 TIMx_SMCR 寄存器的 SMS = 111,选择定时器外部时钟模式 1
- 5. 配置 TIMx SMCR 寄存器中的 TS = 110,选定 TI2 作为触发输入源
- 6. 设置 TIMx_CR1 寄存器的 CEN = 1, 启动计数器

当上升沿出现在 TI2, 计数器计数一次, 且 TIF 标志被设置。

在 TI2 的上升沿和计数器实际时钟之间的延时取决于在 TI2 输入端的重新同步电路。

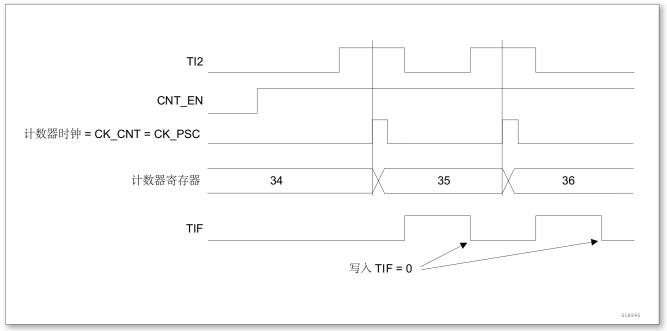


图 102. 外部时钟模式 1 下的控制电路

外部时钟源模式 2

选定此模式的方法为: 令 TIMx_SMCR 寄存器中的 ECE = 1 计数器能够在外部触发 ETR 的每一个上升沿或下降沿计数。下图是外部触发输入的总体框图:

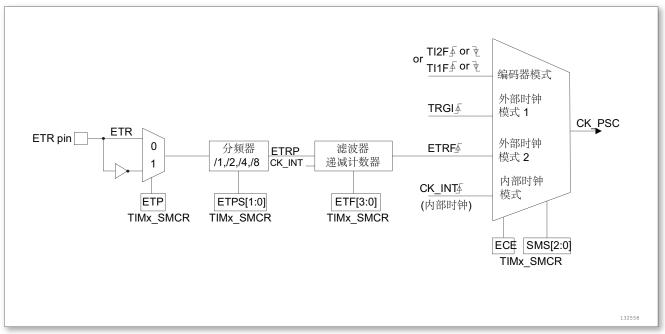


图 103. 外部触发输入框图

例如,要配置在 ETR 下每 2 个上升沿计数一次的向上计数器,使用下列步骤:

- 1. 本例中不需要滤波器,置 TIMx_SMCR 寄存器中的 ETF[3: 0] = 0000
- 2. 设置预分频器,置 TIMx_SMCR 寄存器中的 ETPS[1: 0] = 01
- 3. 设置在 ETR 的上升沿检测,置 TIMx_SMCR 寄存器中的 ETP = 0
- 4. 开启外部时钟模式 2, 置 TIMx_SMCR 寄存器中的 ECE = 1
- 5. 启动计数器,置 TIMx_CR1 寄存器中的 CEN = 1

计数器在每2个ETR上升沿计数一次。

在 ETR 的上升沿和计数器实际时钟之间的延时取决于在 ETRP 信号端的重新同步电路。

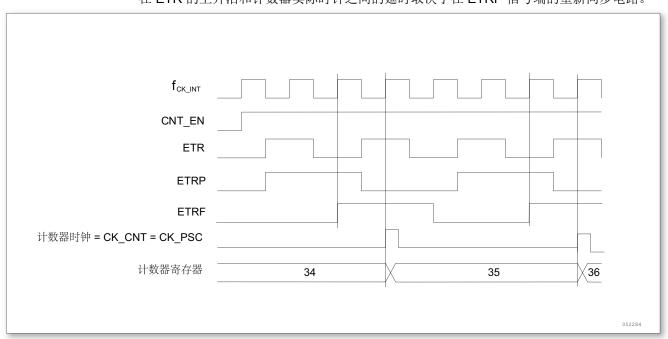


图 104. 外部时钟模式 2 下的控制电路

16.3.4 捕获/比较通道

每一个捕获/比较通道都是围绕着一个捕获/比较寄存器 (包含影子寄存器),包括捕获的输入部分 (数字滤波、多路复用和预分频器),和输出部分 (比较器和输出控制)。

下面几张图是一个捕获/比较通道概览。输入部分对相应的 Tlx 输入信号采样,并产生一个滤波后的信号 TlxF。然后,一个带极性选择的边缘监测器产生一个信号 (TlxFPx),它可以作为从模式控制器的输入触发或者作为捕获控制。该信号通过预分频进入捕获寄存器 (ICxPS)。

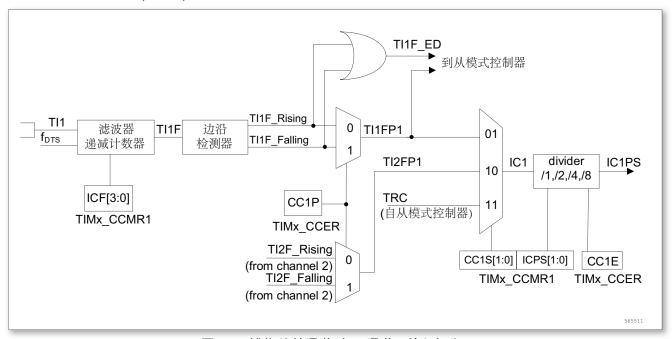


图 105. 捕获/比较通道 (如:通道 1 输入部分)

输出部分产生一个中间波形 OCxRef(高有效) 作为基准,链的末端决定最终输出信号的极性。

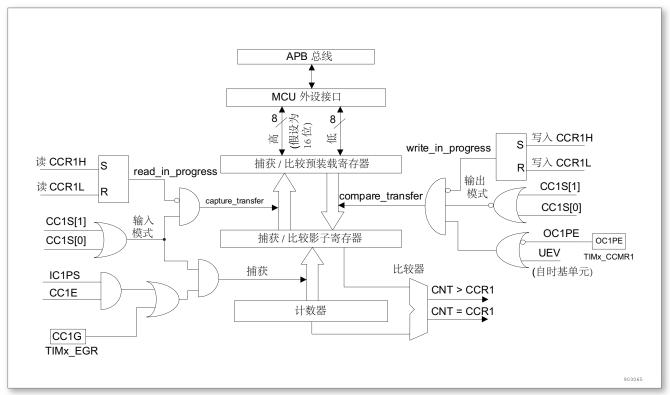


图 106. 捕获/比较通道 1 的主电路

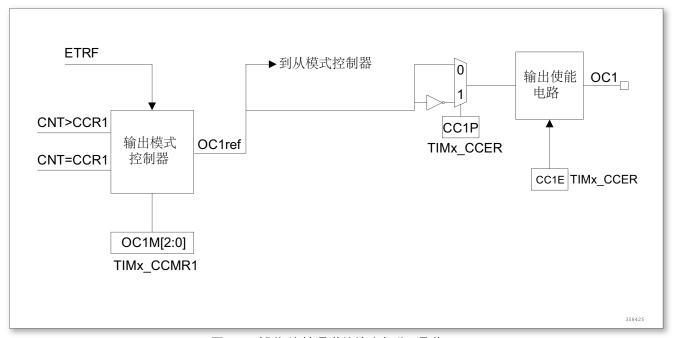


图 107. 捕获/比较通道的输出部分 (通道 1)

捕获/比较模块由一个预装载寄存器和一个影子寄存器组成。读写过程仅操作预装载寄存器。在捕获模式下,捕获发生在影子寄存器上,然后再复制到预装载寄存器中。

在比较模式下,预装载寄存器的内容被复制到影子寄存器中,然后影子寄存器的内容和计数器进行比较。

16.3.5 输入捕获模式

在输入捕获模式下,当检测到 ICx 信号上相应的边沿后,计数器的当前值被锁存到捕获/比较寄存器 (TIMx_CCRx) 中。当捕获事件发生时,相应的 CCxIF 标志 (TIMx_SR 寄存器) 被置 1,如果开放了中断或者 DMA 操作,则将产生中断或者 DMA 操作。如果捕获事件发生时 CCxIF 标志已经为高,那么重复捕获标志 CCxOF(TIMx_SR 寄存器) 被置 1。写 CCxIF = 0 可清除 CCxIF,或读取存储在 TIMx_CCRx 寄存器中的捕获数据也可清除 CCxIF。写 CCxOF = 0 可清除 CCxOF。

以下例子说明如何在 TI1 输入的上升沿时捕获计数器的值到 TIMx_CCR1 寄存器中,步骤如下:

- 选择有效输入端: TIMx_CCR1 必须连接到 TI1 输入, 所以写入 TIMx_CCR1 寄存器中的 CC1S = 01, 当 CC1S 不为 00 时,通道被配置为输入,并且 TM1_CCR1 寄存器变为只读。
- 根据输入信号的特点,配置输入滤波器为所需的带宽 (即输入为 Tlx 时,输入滤波器控制位是 TIMx_CCMRx 寄存器中的 ICxF 位)。假设输入信号在最多 5 个时钟周期的时间内抖动,我们须配置滤波器的带宽长于 5 个时钟周期。因此我们可以 (以 fDTS 频率)连续采样 8 次,以确认在 Tl1 上一次真实的边沿变换,即在 TlMx_CCMR1 寄存器中写入 IC1F = 0011。
- 选择 TI1 通道的有效转换边沿,在 TIMx CCER 寄存器中写入 CC1P = 0(上升沿)。
- 配置输入预分频器。在本例中,我们希望捕获发生在每一个有效的电平转换时刻,因此 预分频器被禁止 (写 TIMx_CCMR1 寄存器的 IC1PS = 00)。
- 设置 TIMx_CCER 寄存器的 CC1E = 1,允许捕获计数器的值到捕获寄存器中。
- 如果需要,通过设置 TIMx_DIER 寄存器中的 CC1IE 位允许相关中断请求,通过设置 TIMx_DIER 寄存器中的 CC1DE 位允许 DMA 请求。

当一个输入捕获时:

- 当产生有效的电平转换时,计数器的值被传送到 TIMx_CCR1 寄存器。
- CC1IF 标志被设置 (中断标志)。当发生至少 2 个连续的捕获时,而 CC1IF 未曾被清除。
- CC1OF 也被置 1。
- · 如设置了 CC1IE 位,则会产生一个中断。
- 如设置了 CC1DE 位,则还会产生一个 DMA 请求。

为了处理捕获溢出,建议在读出捕获溢出标志之前读取数据,这是为了避免丢失在读出捕获溢出标志之后和读取数据之前可能产生的捕获溢出信息。

注:设置 TIMx_EGR 寄存器中相应的 CCxG 位,可以通过软件产生输入捕获中断和/或 DMA 请求。

16.3.6 PWM 输入模式

该模式是输入捕获模式的一个特例,除下列区别外,操作与输入捕获模式相同:

- 两个 ICx 信号被映射同一个 TIx 输入
- 2 个 ICx 信号为边沿有效, 但是极性相反
- 其中一个 TIxFP 信号被作为触发输入信号,而从模式控制器被配置成复位模式例如,你需要测量输入到 TI1 上的 PWM 信号的长度 (TIMx_CCR1 寄存器)和占空比 (TIMx_CCR2 寄存器),具体步骤如下 (取决于 CK_INT 的频率和预分频器的值)
- 选择 TIMx_CCR1 的有效输入: 置 TIMx_CCMR1 寄存器的 CC1S = 01(选择 TI1)

- 选择 TI1FP1 的有效极性 (用来捕获数据到 TIMx_CCR1 中和清除计数器): 置 CC1P = 0(上升沿有效)。
- 选择 TIMx_CCR2 的有效输入: 置 TIMx_CCMR1 寄存器的 CC2S = 10(选择 TI1)。
- 选择 TI1FP2 的有效极性 (捕获数据到 TIMx CCR2): 置 CC2P = 1(下降沿有效)。
- 选择有效的触发输入信号: 置 TIMx_SMCR 寄存器中的 TS = 101(选择 TI1FP1)。
- 配置从模式控制器为复位模式:置 TIMx SMCR中的 SMS = 100。
- 使能捕获: 置 TIMx CCER 寄存器中 CC1E = 1 且 CC2E = 1。

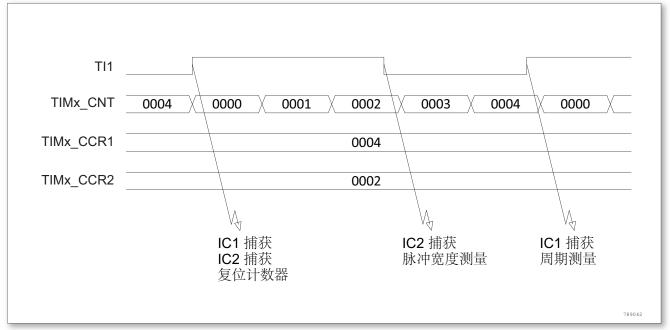


图 108. 捕获/比较通道的输出部分 (通道 1)

由于只有TI1FP1和TI2FP2连到了从模式控制器。所以PWM输入模式只能使用TIMx_CH1/TIMx_CH2信号。

16.3.7 强制输出模式

在输出模式 (TIMx_CCMRx 寄存器中 CCxS = 00) 下,输出比较信号 (OCxREF 和相应的 OCx) 能够直接由软件强置为有效或无效状态,而不依赖于输出比较寄存器和计数器间的 比较结果。

置 TIMx_CCMRx 寄存器中相应的 OCxM = 101,即可强置输出比较信号 (OCxREF/OCx)为有效状态。这样 OCxREF 被强置为高电平 (OCxREF 始终为高电平有效),同时 OCx 得到 CCxP 极性位相反的值。例如:CCxP = 0(OCx 高电平有效),则 OCx 被强置为高电平。置 TIMx_CCMRx 寄存器中的 OCxM = 100,可强置 OCxREF 信号为低。该模式下,在 TIMx_CCRx 影子寄存器和计数器之间的比较仍然在进行,相应的标志也会被修改。因此仍然会产生相应的中断和 DMA 请求。这将会在下面的输出比较模式一节中介绍。

16.3.8 输出比较模式

此项功能是用来控制一个输出波形或者指示何时一段给定的的时间已经到时。

当计数器与捕获/比较寄存器的内容相同时,输出比较功能做如下操作:

• 将输出比较模式 (TIMx_CCMRx 寄存器中的 OCxM 位) 和输出极性 (TIMx_CCER 寄存器中的 CCxP 位) 定义的值输出到对应的管脚上。在比较匹配时,输出管脚可以保持它

的电平 (OCxM = 000)、被设置成有效电平 (OCxM = 001)、被设置成无有效电平 (OCxM = 010) 或进行翻转 (OCxM = 011)。

- 设置中断状态寄存器中的标志位 (TIMx_SR 寄存器中的 CCxIF 位)。
- 若设置了相应的中断屏蔽 (TIMx_DIER 寄存器中的 CCXIE 位),则产生一个中断。
- 若设置了相应的使能位 (TIMx_DIER 寄存器中的 CCxDE 位, TIMx_CR2 寄存器中的 CCDS 位选择 DMA 请求功能),则产生一个 DMA 请求。

TIMx_CCMRx 中的 OCxPE 位选择 TIMx_CCRx 寄存器是否需要使用预装载寄存器。在输出比较模式下,更新事件 UEV 对 OCxREF 和 OCx 输出没有影响。同步的精度可以达到计数器的一个计数周期。输出比较模式 (在单脉冲模式下) 也能用来输出一个单脉冲。

输出比较模式的配置步骤:

- 1. 选择计数器时钟 (内部,外部,预分频器)
- 2. 将相应的数据写入 TIMx_ARR 和 TIMx_CCRx 寄存器中
- 3. 如果要产生一个中断请求和/或一个 DMA 请求,设置 CCxIE 位和/或 CCxDE 位
- 4. 选择输出模式,例如: 必须设置 OCxM = '011'、OCxPE = '0'、CCxP = '0' 和 CCxE = '1', 当计数器 CNT 与 CCRx 匹配时翻转 OCx 的输出管脚, CCRx 预装载未用, 开启 OCx 输出且高电平有效
- 5. 设置 TIMx_CR1 寄存器的 CEN 位启动计数器

TIMx_CCRx 寄存器能够在任何时候通过软件进行更新以控制输出波形,条件是未使用预装载寄存器 (OCxPE = '0',否则 TIMx_CCRx 影子寄存器只能在发生下一次更新事件时被更新)。下图给出了一个例子。

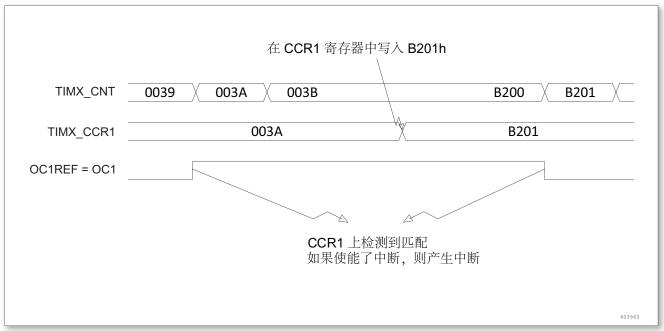


图 109. 输出比较模式,翻转 OC1

16.3.9 PWM 模式

脉冲宽度调制模式可以产生一个由 TIMx_ARR 寄存器确定频率、由 TIMx_CCRx 寄存器确定与空比的信号。

在 TIMx_CCMRx 寄存器中的 OCxM 位写入'110'(PWM 模式 1) 或'111'(PWM 模式 2), 能够独立地设置每个 OCx 输出通道产生一路 PWM。必须设置 TIMx_CCMRx 寄存器

OCxPE 位以使能相应的预装载寄存器,最后还要设置 TIMx_CR1 寄存器的 ARPE 位使能自动重装载的预装载寄存器 (在向上计数或中心对称模式中)。

因为仅当发生一个更新事件的时候,预装载寄存器才能被传送到影子寄存器,因此在计数器开始计数之前,必须通过设置 TIMx_EGR 寄存器中的 UG 位来初始化所有的寄存器。

OCx 的极性可以通过软件在 TIMx_CCER 寄存器中的 CCxP 位设置,它可以设置为高电平有效活或低电平有效。TIMx_CCER 寄存器中的 CCxE 位控制 OCx 输出使能。详见 TIMx_CCERx 寄存器的描述。

在 PWM 模式 (模式 1 或模式 2) 下, TIMx_CNT 和 TIM1_CCRx 始终在进行比较, (依据计数器的计数方向) 以确定是否符合 TIM1_CCRx ≤ TIM1_CNT 或者 TIM1_CNT ≤ TIM1_CCRx。 然而为了与 OCREF_CLR 的功能 (在下一个 PWM 周期之前, ETR 信号上的一个外部事件能够清除 OCxREF) 一致,OCxREF 信号只能在下述条件下产生:

- 当比较的结果改变
- 当输出比较模式 (TIMx_CCMRx 寄存器中的 OCxM 位) 从 '冻结'(无比较, OCxM = '000') 切换到某个 PWM 模式 (OCxM = '110'或 '111')

这样在运行中可以通过软件强置 PWM 输出。根据 TIMx_CR1 寄存器中 CMS 位的状态,定时器能够产生边沿对齐的 PWM 信号或中央对齐的 PWM 信号。

PWM 边沿对齐模式

向上计数配置

当 TIMx_CR1 寄存器中的 DIR 位为低的时候执行向上计数。

下面是一个 PWM 模式 1 的例子。当 TIMx_CNT < TIMx_CCRx 时 PWM 信号参考 OCxREF 为高,否则为低。如果 TIMx_CCRx 中的比较值大于自动重装载值 (TIMx_ARR),则 OCxREF 保持为 '1'。如果比较值为 0,则 OCxREF 保持为 '0'。下图为 TIMx_ARR = 8 时边沿对齐的 PWM 波形实例。

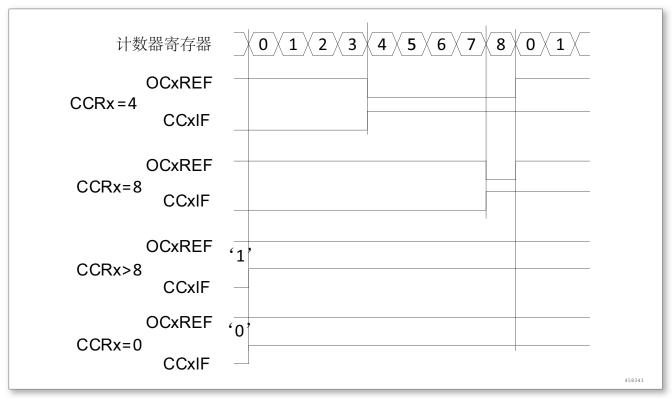


图 110. 边沿对齐的 PWM 波形 (ARR = 8)

向下计数的配置

当 TIMx CR1 寄存器的 DIR 位为高时执行向下计数。

在 PWM 模式 1,当 TIMx_CNT > TIMx_CCRx 时参考信号 OCxREF 为低,否则为高。如果 TIMx_CCRx 中的比较值大于 TIMx_ARR 中的自动重装载值,则 OCxREF 保持为'1'。该模式下不能产生 0 % 的 PWM 波形。

PWM 中央对齐模式

当 TIMx_CR1 寄存器中的 CMS 位不为'00'时为中央对齐模式 (所有其他的配置对 OCxREF /OCx 信号都有相同的作用)。根据不同的 CMS 位的设置,比较标志可以在计数器向上计数时被置 1、在计数器向下计数时被置 1、或在计数器向上和向下计数时被置 1。TIMx_CR1 寄存器中的计数方向位 (DIR) 由硬件更新,不要用软件修改它。参看中央对齐模式章节。

下图给出了一些中央对齐的 PWM 波形的例子

- TIMx ARR = 8
- PWM 模式 1
- TIMx_CR1 寄存器中的 CMS = 01,在中央对齐模式 1 时,当计数器向下计数时设置比较标志

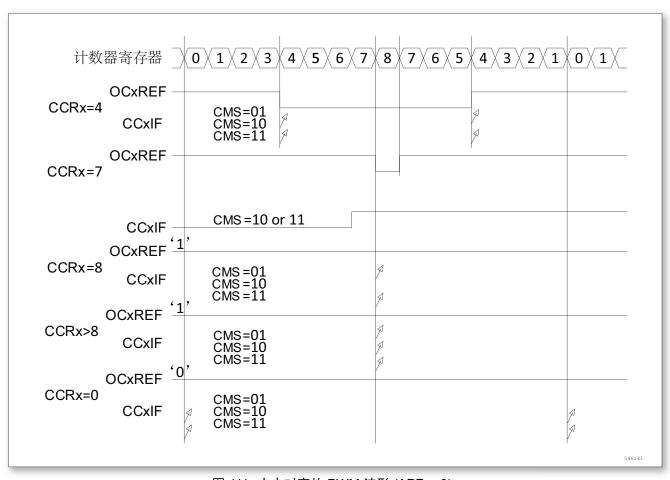


图 111. 中央对齐的 PWM 波形 (APR = 8)

使用中央对齐模式的提示:

- 进入中央对齐模式时,使用当前的上/下计数配置;这就意味着计数器向上还是向下计数取决于 TIMx_CR1 寄存器中 DIR 位的当前值。此外,软件不能同时修改 DIR 和 CMS 位。
- 不推荐当运行在中央对齐模式时改写计数器,因为会产生不可预知的结果。特别地:
 - 如果写入计数器的值大于自动重加载的值 (TIMx_CNT > TIMx_ARR),则方向不会被更新。例如,如果计数器正在向上计数,它就会继续向上计数。
 - 如果将 0 或者 TIMx_ARR 的值写入计数器,方向被更新,但不产生更新事件 UEV
- 使用中央对齐模式最保险的方法,就是在启动计数器之前产生一个软件更新(设置 TIMx_ EGR 位中的 UG 位),不要在计数进行过程中修改计数器的值。

16.3.10 单脉冲模式

单脉冲模式 (OPM) 是前述众多模式的一个特例。这种模式允许计数器响应一个激励,并在一个程序可控的延时之后产生一个脉宽可程序控制的脉冲。

可以通过从模式控制器启动计数器,在输出比较模式或者 PWM 模式下产生波形。设置 TIMx_CR1 寄存器中的 OPM 位将选择单脉冲模式,这样可以让计数器自动地在产生下一个更新事件 UEV 时停止。

仅当比较值与计数器的初始值不同时,才能产生一个脉冲。启动之前(当定时器正在等待触

发), 必须如下配置:

- 向上计数方式: CNT < CCRx ≤ ARR(特别地, 0 < CCRx)
- 向下计数方式: CNT > CCRx

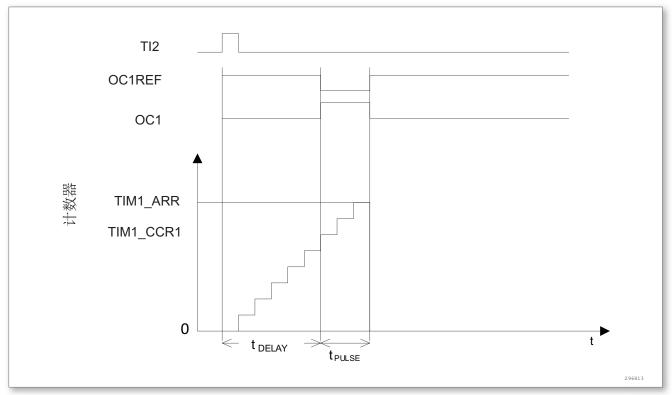


图 112. 单脉冲模式的例子

例如,你需要在从 TI2 输入脚上检测到一个上升沿开始,延迟 t_{DELAY} 之后,在 OC1 上产生一个长度为 t_{PULSE} 的正脉冲。

假定 TI2FP2 作为触发 1:

- 置 TIMx_CCMR1 寄存器中的 CC2S = 01,把 TI2FP2 映像到 TI2
- 置 TIMx CCER 寄存器中的 CC2P = 0, 使 TI2FP2 能够检测上升沿
- 置 TIMx SMCR 寄存器中的 TS = 110, TI2FP2 作为从模式控制器的触发 (TRGI)
- 置 TIMx_SMCR 寄存器中的 SMS = 110(触发模式), TI2FP2 被用来启动计数器

OPM 波形由写入比较寄存器的数值决定 (要考虑时钟频率和计数器预分频器)。

- t_{DELAY} 由写入 TIMx_CCR1 寄存器中的值定义。
- t_{PULSE} 由自动装载值和比较值之间的差值定义 (TIMx_ARR TIMx_CCR1)。
- 假定当发生比较匹配时要产生从 0 到 1 的波形,当计数器到达预装载值是要产生一个从 1 到 0 的波形;首先要置 TIMx_CCMR1 寄存器的 OC1M = 111,进入 PWM 模式 2;根 据需要有选择地使能预装载寄存器:置 TIMx_CCMR1 中的 OC1PE = 1 和 TIMx_CR1 寄存器中的 ARPE;然后在 TIMx_CCR1 寄存器中填写比较值,在 TIMx_ARR 寄存器中填写自动装载值,修改 UG 位来产生一个更新事件,然后等待在 TI2 上的一个外部触发事件。本例中,CC1P = 0。

在这个例子中, TIMx CR1 寄存器中的 DIR 和 CMS 位应该置低。

因为只需一个脉冲,所以必须设置 TIMx_CR1 寄存器中的 OPM = 1,在下一个更新事件 (当计数器从自动装载值翻转到 0) 时停止计数。

特殊情况: OCx 快速使能:

在单脉冲模式下,在 TIx 输入脚的边沿检测逻辑设置 CEN 位以启动计数器。然后计数器和比较值间的比较操作产生了输出的转换。但是这些操作需要一定的时钟周期,因此它限制了可得到的最小延时 tops AY。

如果要以最小延时输出波形,可以设置 TIMx_CCMRx 寄存器中的 OCxFE 位;此时强制 OCxREF(和 OCx)被强制响应激励而不再依赖比较的结果,输出的波形与比较匹配时的波形一样。OCxFE 只在通道配置为 PWM1 和 PWM2 模式时起作用。

16.3.11 在外部事件时清除 OCxREF 信号

对于一个给定的通道,在 ETRF 输入端设置 TIMx_CCMRx 寄存器中对应的 OCxCE 位为'1')的高电平能够把 OCxREF 信号拉低,OCxREF 信号将保持为低直到发生下一次的更新事件 UEV。

该功能只能用于输出比较和 PWM 模式,而不能用于强置模式。

例如,OCxREF 信号可以连到一个外部输入。这时,ETR 必须配置如下:

- 外部触发预分频器必须处于关闭: TIMx SMCR 寄存器中的 ETPS[1: 0] = 00
- 必须禁止外部时钟模式 2: TIMx_SMCR 寄存器中的 ECE = 0
- 外部触发极性 (ETP) 和外部触发滤波器 (ETF) 可以根据需要配置

下图显示了当 ETRF 输入变为高时,对应不同 OCxCE 的值,OCxREF 信号的动作。在这个例子中,定时器 TIMx 被置于 PWM 模式。

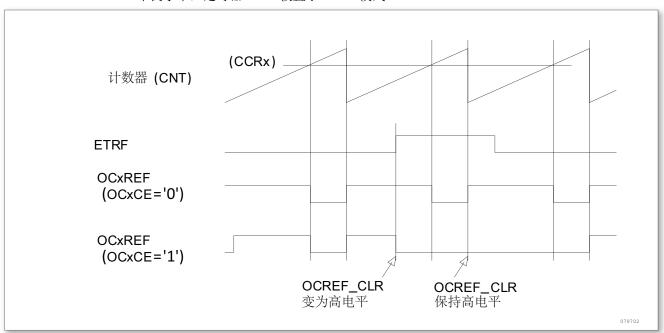


图 113. 清除 TIMx 的 OCxREF

16.3.12 编码器接口模式

选择编码器接口模式的方法是:如果计数器只在 TI2 的边沿计数,则置 TIMx_SMCR 寄存器中的 SMS = 001;如果只在 TI1 边沿计数,则置 SMS = 010;如果计数器同时在 TI1 和 TI2 边沿计数,则置 SMS = 011。

通过设置 TIMx_CCER 寄存器中的 CC1P 和 CC2P 位,可以选择 TI1 和 TI2 极性;如果需

不计数

向上计数

向下计数

向上计数

不计数

向下计数

向上计数

向下计数

要,还可以对输入滤波器编程。

低

高

低

高

两个输入 TI1 和 TI2 被用来作为增量编码器的接口。下表,假定计数器已经启动 (TIMx_CR1 寄存器中的 CEN = 1),则计数器由每次在 TI1FP1 或 TI2FP2 上的有效跳变驱动。TI1FP1 和 TI2FP2 是 TI1 和 TI2 在通过输入滤波器和极性控制后的信号; 如果没有滤波和变相, 则 TI1FP1 = TI1;如果没有滤波和变相,则TI2FP2 = TI2。根据两个输入信号的跳变顺序,产 生了计数脉冲和方向信号。依据两个输入信号的跳变顺序,计数器向上或向下计数,同时 硬件对 TIMx CR1 寄存器的 DIR 位进行相应的设置。不管计数器是依靠 TI1 计数、依靠 TI2 计数或者同时依靠 TI1 和 TI2 计数。在任一输入端 (TI1 或者 TI2) 的跳变都会重新计算 DIR 位。

编码器接口模式基本上相当于使用了一个带有方向选择的外部时钟。这意味着计数器只在 0 到 TIMx ARR 寄存器的自动装载值之间连续计数 (根据方向, 或是 0 到 ARR 计数, 或是 ARR 到 0 计数)。所以在开始计数之前必须配置 TIMx ARR; 同样,捕获器、比较器、预 分频器、触发输出特性等仍工作如常。

在这个模式下,计数器依照增量编码器的速度和方向被自动的修改,因此计数器的内容始 终指示着编码器的位置。计数方向与相连的传感器旋转的方向对应。下表列出了所有可能 的组合,假设 TI1 和 TI2 不同时变换。

表 44. 计数方向与编码器信号的关系										
有效边沿	相对信号的电平 (TI1FP1 对	TI1FP	1 信号	TI1FP2 信号						
有双型值	应 TI2,TI2FP2 对应 TI1)	上升	下降	上升	下降					
	高	向下计数	向上计数	不计数	不计数					

向上计数

不计数

不计数

向下计数

쿠

仅在 TI1 计数

仅在 TI2 计数

在 TI1 和 TI2 上计数

低 向上计数 向下计数 向下计数 向上计数 一个外部的增量编码器可以直接与 MCU 连接而不需要外部接口逻辑。但是,一般使用比 较器将编码器的差动输出转换到数字信号,这大大增加了抗噪声干扰能力。编码器输出的

第三个信号表示机械零点,可以把它连接到一个外部中断输入并触发一个计数器复位。

向下计数

不计数

不计数

向上计数

下图是一个计数器操作的实例,显示了计数信号的产生和方向控制。它还显示了当选择了 双边沿时,输入抖动是如何被抑制的,抖动可能会在传感器的位置靠近一个转换点时产生。 在这个例子中,我们假定配置如下:

- C1S = '01' (TIMx_CCMR1 寄存器, IC1FP1 映射到 TI1)
- CC2S = '01' (TIMx CCMR2 寄存器, IC2FP2 映射到 TI2)
- CC1P = '0' (TIMx_CCER 寄存器, IC1FP1 不反相, IC1FP1 = TI1)
- CC2P = '0' (TIMx CCER 寄存器, IC2FP2 不反相, IC2FP2 = TI2)
- SMS = '011' (TIMx_SMCR 寄存器,所有的输入均在上升沿和下降沿有效)
- CEN = '1' (TIMx CR1 寄存器, 计数器使能)

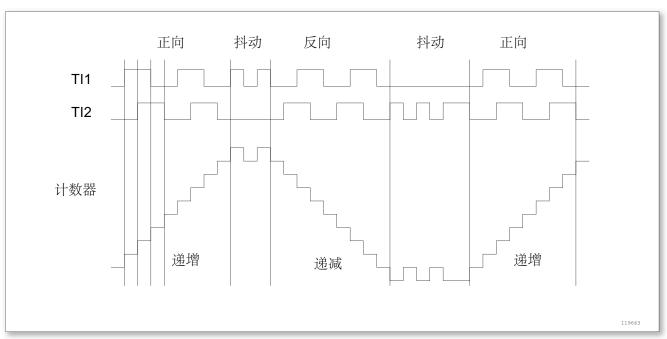
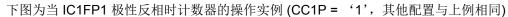



图 114. 编码器模式下的计数器操作实例

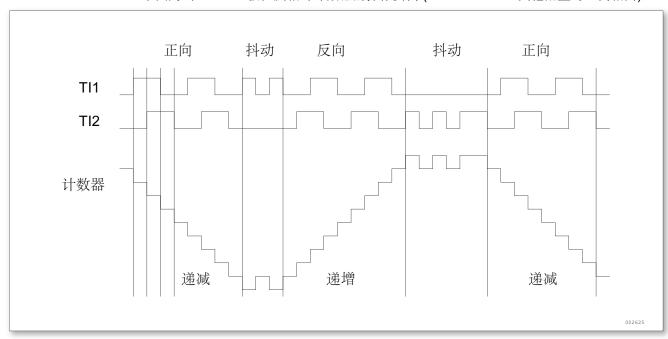


图 115. IC1FP1 反相的编码器接口模式实例

当定时器配置成编码器接口模式时,提供传感器当前位置的信息。使用第二个配置在捕获模式定时器测量两个编码器事件的间隔,可以获得动态的信息 (速度,加速度,减速度)。指示机械零点的编码器输出可被用做此目的。根据两个事件间的间隔,可以按照固定的时间读出计数器。如果可能的话,你可以把计数器的值锁存到第三个输入捕获寄存器 (捕获信号必须是周期的并且可以由另一个定时器产生)。它也可以通过一个由实时时钟产生的 DMA请求来读取它的值。

16.3.13 定时器输入异或功能

TIMx_CR2 寄存器中的 TI1S 位,允许通道 1 的输入滤波器连接到一个异或门的输出端,异或门的 3 个输入端为 TIMx CH1、TIMx CH2 和 TIMx CH3。

异或输出能够被用于所有定时器的输入功能,如触发或输入捕获。高级控制定时器章节给出了此特性用于连接霍尔传感器的例子。

16.3.14 定时器和外部触发的同步

TIMx 定时器能够在多种模式下和一个外部的触发同步: 复位模式、门控模式和触发模式。

从模式:复位模式

在发生一个触发输入事件时,计数器和它的预分频器能够重新被初始化;同时,如果 TIMx_CR1 寄存器的 URS 位为低,还产生一个更新事件 UEV;然后所有的预装载寄存器 (TIMx_ARR, TIMx_CCRx) 都被更新了。

- 在以下的例子中, TI1 输入端的上升沿导致向上计数器被清零
- 配置通道 1 以检测 TI1 的上升沿。配置输入滤波器的带宽 (在本例中,不需要任何滤波器,因此保持 IC1F = 0000)。触发操作中不使用捕获预分频器,所以不需要配置。CC1S 位只选择输入捕获源,即 TIMx_CCMR1 寄存器中 CC1S = 01。置 TIMx_CCER 寄存器中 CC1P = 0 以确定极性 (只检测上升沿)
- 置 TIMx_SMCR 寄存器中 SMS = 100, 配置定时器为复位模式; 置 TIMx_SMCR 寄存器中 TS = 101, 选择 TI1 作为输入源
- 置 TIMx CR1 寄存器中 CEN = 1, 启动计数器

计数器开始依据内部时钟计数,然后正常运转直到 TI1 出现一个上升沿;此时,计数器被清零然后从 0 重新开始计数。同时,触发标志 (TIMx_SR 寄存器中的 TIF 位) 被设置,根据 TIMx_DIER 寄存器中 TIE(中断使能) 位和 TDE(DMA 使能) 位的设置,产生一个中断请求或一个 DMA 请求。

下图显示当自动重装载寄存器 TIMx_ARR = 0x36 时的动作。在 TI1 上升沿和计数器的实际复位之间的延时取决于 TI1 输入端的重同步电路。



图 116. 复位模式下的控制电路

从模式: 门控模式

计数器的使能依赖于选中的输入端的电平。

在如下的例子中, 计数器只在 TI1 为低时向上计数:

- 配置通道 1 以检测 TI1 上的低电平。配置输入滤波器带宽 (本例中,不需要滤波,所以保持 IC1F = 0000)。触发操作中不使用捕获预分频器,所以不需要配置。CC1S 位用于选择输入捕获源,置 TIMx_CCMR1 寄存器中 CC1S = 01。置 TIMx_CCER 寄存器中 CC1P = 1 以确定极性 (只检测低电平)。
- 置 TIMx_SMCR 寄存器中 SMS = 101, 配置定时器为门控模式; 置 TIMx_SMCR 寄存器中 TS = 101, 选择 TI1 作为输入源。
- 置 TIMx_CR1 寄存器中 CEN = 1, 启动计数器。在门控模式下,如果 CEN = 0,则计数器不能启动,不论触发输入电平如何。

只要 TI1 为低,计数器开始依据内部时钟计数,在 TI1 变高时停止计数。当计数器开始或停止时都设置 TIMx_SR 中的 TIF 标置。

TI1 上升沿和计数器实际停止之间的延时取决于 TI1 输入端的重同步电路。

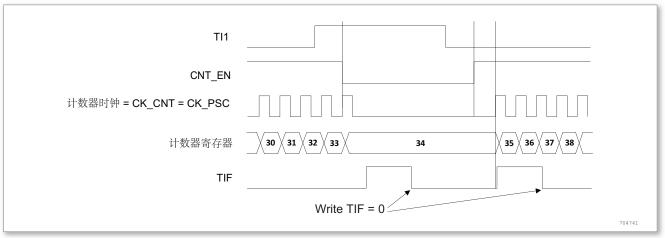


图 117. 门控模式下的控制电路

从模式: 触发模式

计数器的使能依赖于选中的输入端上的事件。

在下面的例子中, 计数器在 TI2 输入的上升沿开始向上计数:

- 配置通道 2 检测 TI2 的上升沿。配置输入滤波器带宽 (本例中,不需要任何滤波器,保持 IC2F = 0000)。触发操作中不使用捕获预分频器,不需要配置。CC2S 位只用于选择输入捕获源,置 TIMx_CCMR1 寄存器中 CC2S = 01。置 TIMx_CCER 寄存器中 CC1P = 1 以确定极性 (只检测低电平)。
- 置 TIMx_SMCR 寄存器中 SMS = 110, 配置定时器为触发模式; 置 TIMx_SMCR 寄存器中 TS = 110, 选择 TI2 作为输入源。

当 TI2 出现一个上升沿时,计数器开始在内部时钟驱动下计数,同时设置 TIF 标志。

TI2 上升沿和计数器启动计数之间的延时取决于 TI2 输入端的重同步电路。

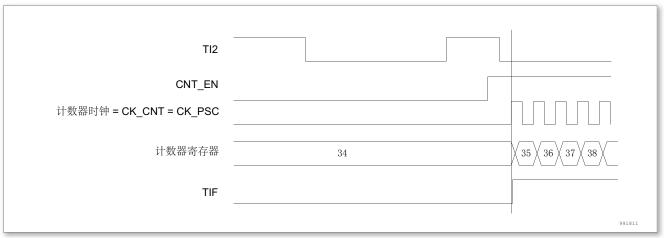


图 118. 触发器模式下的控制电路

从模式:外部时钟模式2+触发模式

外部时钟模式 2 可以与另一种从模式 (外部时钟模式 1 和编码器模式除外) 一起使用。这时,ETR 信号被用作外部时钟的输入,在复位模式、门控模式或触发模式时可以选择另一个输入作为触发输入。不建议使用 TIMx_SMCR 寄存器的 TS 位选择 ETR 作为 TRGI。

在下面的例子中,当 TI1 上出现一个上升沿时,计数器便在 ETR 的每一个上升沿向上计数一次:

- 通过 TIMx_SMCR 寄存器配置外部触发输入电路:
 - ETF = 0000: 没有滤波
 - ETPS = 00: 不用预分频器
 - ETP = 0: 检测 ETR 的上升沿,置 ECE = 1 使能外部时钟模式 2
- 按如下配置通道 1, 检测 TI 的上升沿:
 - IC1F = 0000: 没有滤波
 - 触发操作中不使用捕获预分频器,不需要配置
 - 置 TIMx CCMR1 寄存器中 CC1S = 01,选择输入捕获源
 - 置 TIMx_CCER 寄存器中 CC1P = 0 以确定极性 (只检测上升沿)
- 置 TIMx_SMCR 寄存器中 SMS = 110, 配置定时器为触发模式。置 TIMx_SMCR 寄存器中 TS = 101, 选择 TI1 作为输入源。

当 TI1 上出现一个上升沿时,TIF 标志被设置,计数器开始在 ETR 的上升沿计数。

ETR 信号的上升沿和计数器实际复位间的延时取决于 ETRP 输入端的重同步电路。

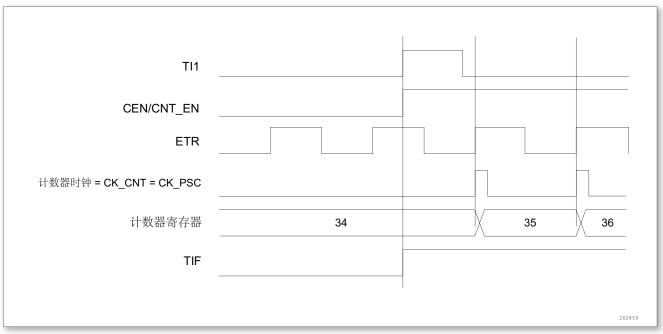


图 119. 外部时钟模式 2 + 触发模式下的控制电路

16.3.15 定时器同步

所有 TIMx 定时器在内部相连,用于定时器同步或链接。当一个定时器处于主模式时,它可以对另一个处于从模式的定时器的计数器进行复位、启动、停止或提供时钟等操作。 下图显示了触发选择和主模式选择模块的概况。

使用一个定时器作为另一个定时器的预分频器

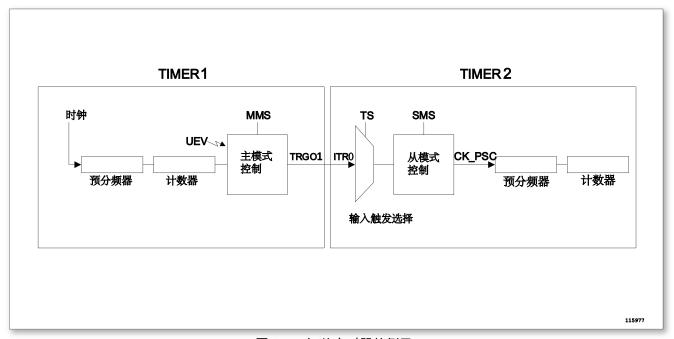


图 120. 主/从定时器的例子

如:可以配置定时器 1 作为定时器 2 的预分频器。参考上图,进行下述操作:

- 配置定时器 1 为主模式,它可以在每一个更新事件 UEV 时输出一个周期性的触发信号。在 TIM1_CR2 寄存器的 MMS = '010'时,每当产生一个更新事件时在 TRGO1 上输出一个上升沿信号。
- 连接定时器 1 的 TRGO1 输出至定时器 2,设置 TIM2_SMCR 寄存器的 TS = '000', 配置定时器 2 为使用 ITR1 作为内部触发的从模式。
- 然后把从模式控制器置于外部时钟模式 1(TIM2_SMCR 寄存器的 SMS = 111); 这样定时器 2即可由定时器 1 周期性的上升沿 (即定时器 1 的计数器溢出) 信号驱动。
- 最后,必须设置相应 (TIMx_CR1 寄存器) 的 CEN 位分别启动两个定时器。

注:如果 OCx 已被选中为定时器 1 的触发输出 (MMS = 1xx),它的上升沿用于驱动定时器 2 的计数器。

使用一个定时器使能另一个定时器

在这个例子中,定时器 2 的运行受由定时器 1 的输出比较控制。参考下图。只当定时器 1 的 OC1REF 为高时定时器 2 才对分频后的内部时钟计数。两个定时器的时钟频率都是由 预分频器对 CK_INT 除以 $3(f_{CK_INT} = f_{CK_INT/3})$ 得到。

- 配置定时器 1 为主模式,送出它的输出比较参考信号 (OC1REF) 为触发输出 (TIM1_CR2 寄存器的 MMS = 100)
- 配置定时器 1 的 OC1REF 波形 (TIM1 CCMR1 寄存器)
- 配置定时器 2 从定时器 1 获得输入触发 (TIM2 SMCR 寄存器的 TS = 001)
- 配置定时器 2 为门控模式 (TIM2 SMCR 寄存器的 SMS = 101)
- 置 TIM2 CR1 寄存器的 CEN = 1 以使能定时器 2
- 置 TIM1_CR1 寄存器的 CEN = 1 以使能定时器 1

注:定时器2的时钟不与定时器1的时钟同步,这个模式只影响定时器2计数器的使能信号。

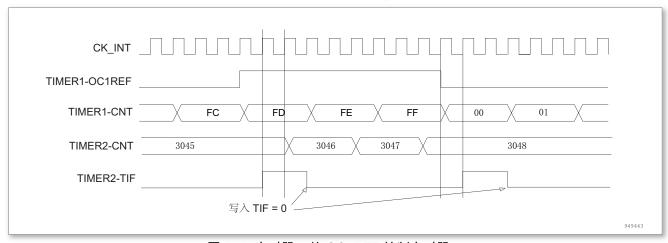


图 121. 定时器 1 的 OC1REF 控制定时器 2

在上图的例子中,在定时器 2 启动之前,它们的计数器和预分频器未被初始化,因此它们从当前的数值开始计数。可以在启动定时器 1 之前复位 2 个定时器,使它们从给定的数值开始,即在定时器计数器中写入需要的任意数值。写 TIMx_EGR 寄存器的 UG 位即可复位定时器。

在下一个例子中,需要同步定时器 1 和定时器 2。定时器 1 是主模式并从 0 开始,定时器 2 是从模式并从 0xE7 开始; 2 个定时器的预分频器系数相同。写 0 到 TIM1_CR1 的 CEN 位将禁止定时器 1,定时器 2 随即停止。

- 配置定时器 1 为主模式,送出输出比较 1 参考信号 (OC1REF) 做为触发输出 (TIM1_CR2 寄存器的 MMS = 100)。
- 配置定时器 1 的 OC1REF 波形 (TIM1 CCMR1 寄存器)。
- 配置定时器 2 从定时器 1 获得输入触发 (TIM2 SMCR 寄存器的 TS = 000)
- 配置定时器 2 为门控模式 (TIM2 SMCR 寄存器的 SMS = 101)
- 置 TIM1 EGR 寄存器的 UG = 1, 复位定时器 1。
- 置 TIM2 EGR 寄存器的 UG = 1, 复位定时器 2。
- 写 0xE7 至定时器 2 的计数器 (TIM2 CNT), 初始化它为 0xE7。
- 置 TIM2 CR1 寄存器的 CEN = 1 以使能定时器 2。
- 置 TIM1 CR1 寄存器的 CEN = 1 以启动定时器 1。
- 置 TIM1 CR1 寄存器的 CEN = 0 以停止定时器 1。

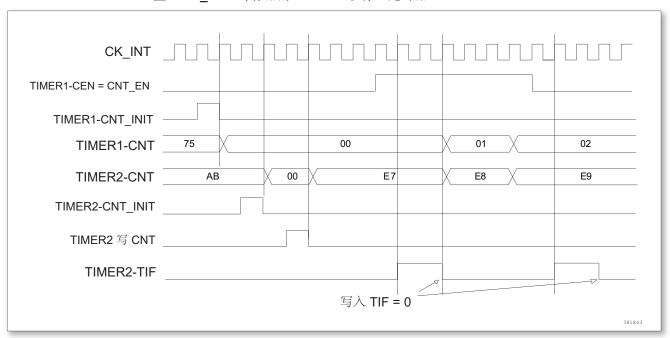


图 122. 通过使能定时器 1 可以控制定时器 2

使用一个定时器去启动另一个定时器

在这个例子中,使用定时器 1 的更新事件使能定时器 2。参考下图。当定时器 1 产生更新事件时,定时器 2 即从它当前的数值 (可以是非 0) 按照分频的内部时钟开始计数。在收到触发信号时,定时器 2 的 CEN 位被自动地置 1,同时计数器开始计数直到写 0 到 TIM2_CR1 寄存器的 CEN 位。两个定时器的时钟频率都是由预分频器对 CK_INT 除以 3(fCK_CNT=fCK_INT/3)。

- 配置定时器 1 为主模式,送出它的更新事件 (UEV) 做为触发输出 (TIM1_CR2 寄存器的 MMS = 010)。
- 配置定时器 1 的周期 (TIM1_ARR 寄存器)。
- 配置定时器 2 从定时器 1 获得输入触发 (TIM2 SMCR 寄存器的 TS = 000)
- 配置定时器 2 为触发模式 (TIM2 SMCR 寄存器的 SMS = 110)
- 置 TIM1 CR1 寄存器的 CEN = 1 以启动定时器 1。

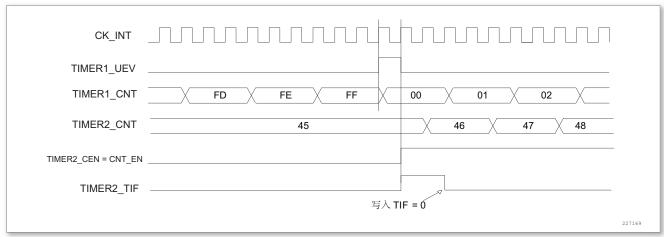


图 123. 使用定时器 1 的更新触发定时器 2

在上一个例子中,可以在启动计数之前初始化两个计数器。下图显示在与 0 相同配置情况下,使用触发模式而不是门控模式 (TIM2 SMCR 寄存器的 SMS = 110)的动作。

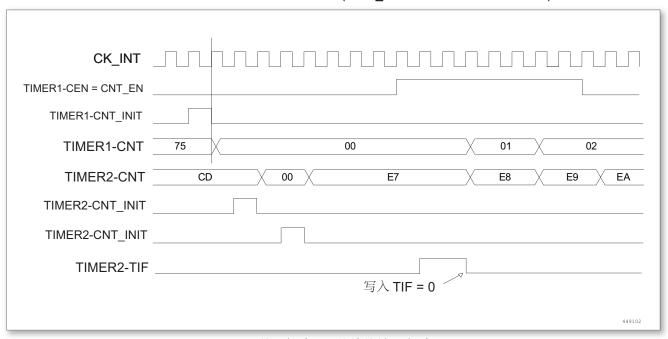


图 124. 利用定时器 1 的使能触发定时器 2

使用一个额定时器作为另一个的预分频器

这个例子使用定时器 1 作为定时器 2 的预分频器。配置如下:

- 配置定时器 1 为主模式,送出它的更新事件 UEV 作为触发输出 (TIM1_CR2 寄存器的 MMS = '010')。然后每次计数器溢出时输出一个周期信号。
- 配置定时器 1 的周期 (TIM1 ARR 寄存器)。
- 配置定时器 2 从定时器 1 获得输入触发 (TIM2 SMCR 寄存器的 TS = 000)
- 配置定时器 2 使用外部时钟模式 (TIM2 SMCR 寄存器的 SMS = 111)
- 置 TIM1_CR2 寄存器的 CEN = 1 以启动定时器 2
- 置 TIM1 CR1 寄存器的 CEN = 1 以启动定时器 1

使用一个外部触发同步地启动 2 个定时器

这个例子中当定时器 1 的 TI1 输入上升时使能定时器 1,使能定时器 1 的使能定时器 2。为保证计数器的对齐,定时器 1 必须配置为主/从模式 (对应 TI1 为从,对应定时器 2 为主):

- 配置定时器 1 为主模式,送出它的使能作为触发输出 (TIM1_CR2 寄存器的 MMS= '001')
- 配置定时器 1 为从模式,从 TI1 获得输入触发 (TIM1 SMCR 寄存器的 TS = '100')
- 配置定时器 1 为触发模式 (TIM1_SMCR 寄存器的 SMS='110')
- 配置定时器 2 从定时器 1 获得输入触发 (TIM2 SMCR 寄存器的 TS = 000)
- 配置定时器 2 为触发模式 (TIM2_SMCR 寄存器的 SMS = 110)

当定时器 1 的 TI1 上出现一个上升沿时,两个定时器同步地按照内部时钟开始计数,两个TIF 标志也同时被设置。

注:在这个例子中,在启动之前两个定时器都被初始化 (设置相应的 UG 位),两个计数器都从 0 开始,但可以通过写入任意一个计数器寄存器 (TIMx_CNT) 在定时器间插入一个偏移。下图中能看到主/从模式下在定时器 1 的 CNT EN 和 CK PSC 之间有个延迟。

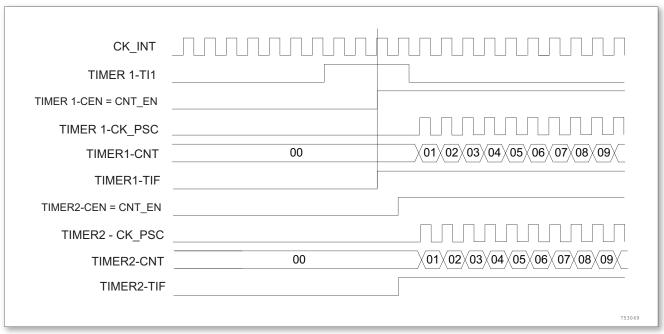


图 125. 使用定时器 1 的 TI1 输入触发定时器 1 和定时器 2

16.3.16 调试模式

当微控制器进入调试模式 (CPU 核心停止),根据 DBG 模块中 DBG_TIMx_STOP 的设置,TIMx 计数器或者继续正常操作,或者停止。详见调试模块章节。

16.4 TIMx 寄存器描述

可以用半字 (16位)或字 (32位)的方式操作这些外设寄存器。

表 45. TIMx 寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	TIMx_CR1	控制寄存器 1	0x00000000	小节 16.4.1
0x04	TIMx_CR2	控制寄存器 2	0x00000000	小节 16.4.2
0x08	TIMx_SMCR	从模式控制寄存器	0x00000000	小节 16.4.3
0x0C	TIMx_DIER	DMA/中断使能寄存器	0x00000000	小节 16.4.4
0x10	TIMx_SR	状态寄存器	0x00000000	小节 16.4.5
0x14	TIMx_EGR	事件产生寄存器	0x00000000	小节 16.4.6
0x18	TIMx_CCMR1	捕获/比较模式寄存器 1	0x00000000	小节 16.4.7
0x1C	TIMx_CCMR2	捕获/比较模式寄存器 2	0x00000000	小节 16.4.8
0x20	TIMx_CCER	捕获/比较使能寄存器	0x00000000	小节 16.4.9
0x24	TIMx_CNT	计数器	0x00000000	小节 16.4.10
0x28	TIMx_PSC	预分频器	0x00000000	小节 16.4.11
0x2C	TIMx_ARR	自动装载寄存器	0x00000000	小节 16.4.12
0x34	TIMx_CCR1	捕获/比较寄存器 1	0x00000000	小节 16.4.13
0x38	TIMx_CCR2	捕获/比较寄存器 2	0x00000000	小节 16.4.14
0x3C	TIMx_CCR3	捕获/比较寄存器 3	0x00000000	小节 16.4.15
0x40	TIMx_CCR4	捕获/比较寄存器 4	0x00000000	小节 16.4.16
0x48	TIMx_DCR	DMA 控制寄存器	0x00000000	小节 16.4.17
0x4C	TIMx_DMAR	连续模式的 DMA 地址	0x00000000	小节 16.4.18

16.4.1 控制寄存器 1(TIMx_CR1)

偏移地址: 0x00 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Re	served			CKD		ARPE	PE CMS		DIR	ОРМ	URS	UDIS	CEN
						rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Type	Reset	Description
15: 10	Reserved			保留, 读为 0
9: 8	CKD	rw	0x00	时钟分频因子 (Clock division)
				这 2 位定义在定时器时钟 (CK_INT) 频率、死区时间和由
				死区发生器与数字滤波器 (ETR, Tlx) 所用的采样时钟之间
				的分频比例。
				00: $t_{DTS} = t_{CK_INT}$
				01: $t_{DTS} = 2 \times t_{CK_INT}$
				10: $t_{DTS} = 4 \times t_{CK_INT}$
				11:保留,不要使用这个配置

Bit	Field	Туре	Reset	Description
7	ARPE	rw	0x00	自动重装载预装载允许位 (Auto-reload preload enable)
				0: TIMx_ARR 寄存器没有缓冲
				1: TIMx_ARR 寄存器被装入缓冲器
6: 5	CMS	ΓW	0x00	选择中央对齐模式 (Center-aligned mode selection) 00: 边沿对齐模式。计数器依据方向位 (DIR) 向上或向下计数 01: 中央对齐模式 1。计数器交替地向上和向下计数。配置为输出的通道 (TIMx_CCMRx 寄存器中 CCxS = 00) 的输出比较中断标志位,只在计数器向下计数时被设置 10:中央对齐模式 2。计数器交替地向上和向下计数。计数器交替地向上和向下计数。配置为输出的通道 (TIMx_CCMRx 寄存器中 CCxS = 00) 的输出比较中断标志位,只在计数器向上计数时被设置 11:中央对齐模式 3。计数器交替地向上和向下计数。计数器交替地向上和向下计数。配置为输出的通道 (TIMx_CCMRx 寄存器中 CCxS = 00) 的输出比较中断标志位,在计数器交替地向上和向下计数时数。配置为输出的通道 (TIMx_CCMRx 寄存器中 CCxS = 00) 的输出比较中断标志位,在计数器向上和向下计数时均被设置注:在计数器开启时 (CEN = 1),不允许从边沿对齐模式转换到中央对齐模式。
4	DIR	rw	0x00	方向 (Direction) 0: 计数器向上计数 1: 计数器向下计数 注: 当计数器配置为中央对齐模式或编码器模式时,该位为只读。
3	ОРМ	rw	0x00	单脉冲模式 (One pulse mode) 0: 在发生更新事件时,计数器不停止 1: 在发生下一次更新事件 (清除 CEN 位) 时,计数器停止
2	URS	rw	0x00	更新请求源 (Update request source) 软件通过该位选择 UEV 事件的源。 0: 如果允许产生更新中断或 DMA 请求,则下述任一事件产生一个更新中断或 DMA 请求: - 计数器溢出/下溢 - 设置 UG 位 - 从模式控制器产生的更新 1: 如果允许产生更新中断或 DMA 请求,则只有计数器溢出/下溢才产生一个更新中断或 DMA 请求

Bit	Field	Туре	Reset	Description
1	UDIS	rw	0x00	禁止更新 (Update disable) 软件通过该位允许/禁止 UEV
				事件的产生
				0: 允许 UEV。更新 (UEV) 事件由下述任一事件产生:
				- 计数器溢出/下溢
				- 设置 UG 位
				- 从模式控制器产生的更新被缓存的寄存器被装入它们的
				预装载值。
				1:禁止 UEV。不产生更新事件,影子寄存器 (ARR、PSC、
				CCRx) 保持它们的值。如果设置了 UG 位或从模式控制器
				发出了一个硬件复位,则计数器和预分频器被重新初始化
0	CEN	rw	0x00	允许计数器 (Counter enable)
				0: 禁止计数器
				1: 使能计数器。
				注:在软件设置了 CEN 位后,外部时钟、门控模式和编码器模
				式才能工作。触发模式可以自动地通过硬件设置 CEN 位。

16.4.2 控制寄存器 2(TIMx_CR2)

偏移地址: 0x04 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved						TI1S		MMS		CCDS		Reserve	d		
								rw	rw	rw	rw	rw			

Bit	Field	Туре	Reset	Description
15: 8	Reserved			保留, 读为 0
7	TI1S	rw	0x00	TI1 选择 (TI1 selection) 0: TIMx_CH1 管脚连到 TI1 输入 1: TIMx_CH1、TIMx_CH2 和 TIMx_CH3 管脚经异或后连到 TI1 输入

Bit	Field	Туре	Reset	Description
Bit 6: 4	Field MMS	Type rw	Reset 0x00	主模式选择 (Master mode selection) 这两位用于选择在主模式下送到从定时器的同步信息 (TRGO)。可能的组合如下: 000: 复位-TIMx_EGR 寄存器的 UG 位被用于作为触发输出 (TRGO)。如果触发输入 (从模式控制器处于复位模式)产生复位,则 TRGO 上的信号相对实际的复位会有一个延迟。 001: 使能-计数器使能信号 CNT_EN 被用于作为触发输出 (TRGO)。有时需要在同一时间启动多个定时器或控制在一段时间内使能从定时器。计数器使能信号是通过 CEN 控制位和门控模式下的触发输入信号的逻辑或产生。当计数器使能信号受控于触发输入时,TRGO 上会有一个延迟,除非选择了主/从模式 (见 TIMx_SMCR 寄存器中 MSM 位的描述)。 010: 更新-更新事件被选为触发输入 (TRGO)。例如,一个主定时器的时钟可以被用作一个从定时器的预分频器。
				011: 比较脉冲-发生一次捕获或一次比较成功时,当要设置 CC1IF 标志时 (即使它已经为高),触发输出送出一个正脉冲 (TRGO)。
				100: 比较-OC1REF 信号被用于作为触发输出 (TRGO) 101: 比较-OC2REF 信号被用于作为触发输出 (TRGO) 110: 比较-OC3REF 信号被用于作为触发输出 (TRGO) 111: 比较-OC4REF 信号被用于作为触发输出 (TRGO)
3	CCDS	rw	0x00	捕获/比较的 DMA 选择 (Capture/compare DMA selection) 0: 当发生 CCx 事件时,送出 CCx 的 DMA 请求 1: 当发生更新事件时,送出 CCx 的 DMA 请求
2: 0	Reserved			保留,读为0

16.4.3 从模式控制寄存器 (TIMx_SMCR)

偏移地址: 0x08 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ETP	ECE	ETF	PS		ETF			MSM TS			OCCS SMS				
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
15	ETP	rw	0x00	外部触发极性 (External trigger polarity)
				该位选择是用 ETR 还是 ETR 的反相来作为触发操作。
				0: ETR 不反相,高电平或上升沿有效
				1: ETR 被反相,低电平或下降沿有效

Bit	Field	Туре	Reset	Description
14	ECE	rw	0x00	外部时钟使能位 (External clock enable) 该位启用外部时钟模式 2。 0: 禁止外部时钟模式 2 1: 使能外部时钟模式 2,计器由 ETRF 信号上的任意有效上升沿驱动注 1: 设置 ECE 位与选择外部时钟模式 1 并将 TRGI 连到 ETRF(SMS = 111 和 TS = 111) 具有相同功效。 注 2: 下述从模式可以与外部时钟模式 2 同时使用: 复位模式, 门控模式和触发模式; 但是, 这时 TRGI 不能连到 ETRF(TS 位不能是 111)。 注 3: 外部时钟模式 1 和外部时钟模式 2 同时被使能时, 外部时钟的输入是 ETRF。
13: 12	ETPS	rw	0x00	外部触发预分频 (External trigger prescaler) 外部触发信号 ETRP 的频率必须最多是 TIMxCLK 频率的 1/4。当输入较快的外部时钟时,可以使用预分频降低 ETRP 的频率。 00: 关闭预分频 01: ETRP 频率除以 2 10: ETRP 频率除以 4 11: ETRP 频率除以 8
11: 8	ETF	rw	0x00	外部触发滤波 (External trigger filter) 这些位定义了对 ETRP 信号采样的频率和对 ETRP 数字滤波的带宽。实际上,数字滤波器是一个事件计数器,它记录到 N 个事件后会产生一个输出的跳变。 0000: 无滤波器,以 fdt 采样 0001: 采样频率 fsampling=fck_int, N = 2 0010: 采样频率 fsampling=fck_int, N = 4 0011: 采样频率 fsampling=fdts/2, N = 8 0100: 采样频率 fsampling=fdts/2, N = 6 0101: 采样频率 fsampling=fdts/4, N = 6 0111: 采样频率 fsampling=fdts/4, N = 8 1000: 采样频率 fsampling=fdts/4, N = 8 1000: 采样频率 fsampling=fdts/8, N = 8 1001: 采样频率 fsampling=fdts/8, N = 8 1010: 采样频率 fsampling=fdts/16, N = 5 1011: 采样频率 fsampling=fdts/16, N = 6 1100: 采样频率 fsampling=fdts/16, N = 6 1101: 采样频率 fsampling=fdts/16, N = 6 1101: 采样频率 fsampling=fdts/16, N = 8 1101: 采样频率 fsampling=fdts/32, N = 5 1111: 采样频率 fsampling=fdts/32, N = 6

Bit	Field	Type	Reset	Description
7	MSM	rw	0x00	主/从模式 (Master/slave mode) 0: 无作用 1: 触发输入 (TRGI) 上的事件被延迟了,以允许在当前定时器 (通过 TRGO) 与它的从定时器间的完美同步,这对要求把几个定时器同步到一个单一的外部事件时是非常有用的
6: 4	TS	rw	0x00	触发选择 (Trigger selection) 这 3 位选择用于同步计数器的触发输入。 000: 内部触发 0(ITR0) 001: 内部触发 1(ITR1) 010: 内部触发 2(ITR2) 011: 内部触发 3(ITR3) 100: TI1 的边沿检测器 (TI1F_ED) 101: 滤波后的定时器输入 1(TI1FP1) 110: 滤波后的定时器输入 2(TI2FP2) 111: 外部触发输入 (ETRF) 更多有关 ITRx 的细节,参见下表。 注: 这些位只能在未用到 (如 SMS = 000) 时被改变,以避免在改变时产生错误的边沿检测。
3	occs	rw	0x00	比较器输出信号清除选择 (output conpare clear selection) 在 PWM 模式下,清除比较器输出 1: 比较器输出作为清除信号 0: 外部触发信号作为清除信号

Bit	Field	Туре	Reset	Description
2: 0	SMS	rw	0x00	从模式选择 (Slave mode selection)
				当选择了外部信号,触发信号 (TRGI) 的有效边沿与选中的
				外部输入极性相关 (见输入控制寄存器和控制寄存器的说
				明)
				000: 关闭从模式 - 如果 CEN = 1,则预分频器直接由内部
				时钟驱动。
				001: 编码器模式 1-根据 TI1FP1 的电平, 计数器在 TI2FP2
				的边沿向上/下计数。
				010: 编码器模式 2 - 根据 TI2FP2 的电平, 计数器在 TI1FP1
				的边沿向上/下计数。
				011: 编码器模式 3 - 根据另一个输入的电平, 计数器在
				TI1FP1 和 TI2FP2 的边沿向上/下计数。
				100: 复位模式 - 选中的触发输入 (TRGI) 的上升沿重新初
				始化计数器,并且产生一个更新寄存器的信号。
				101: 门控模式 - 当触发输入 (TRGI) 为高时,计数器的时
				钟开启。当触发输入变为低时,计数器停止(但不复位)。计
				数器的启动和停止都是受控的。
				110: 触发模式 - 计数器在触发输入 TRGI 的上升沿启动 (但
				不复位),只有计数器的启动是受控的。
				111: 外部时钟模式 1 - 选中的触发输入 (TRGI) 的上升沿
				驱动计数器。
				注:如果 TI1F_EN 被选为触发输入 (TS = 100) 时,不要使用门
				控模式。这是因为,TI1F_ED 在每次TI1F 变化时输出一个脉冲,
				然而门控模式是要检查触发输入的电平。

表 46. TIMx 内部触发连接

从定时器	ITR0(TS = 000)	ITR1(TS = 001)	ITR2(TS = 010)	ITR3(TS = 011)
TIM3	TIM1	TIM2	TIM8	无

16.4.4 DMA/中断使能寄存器 (TIMx_DIER)

偏移地址: 0x0C 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	TDE	Res.	CC4DE	CC3DE	CC2DE	CC1DE	UDE	Res.	TIE	Res.	CC4IE	CC3IE	CC2IE	CC1IE	UIE
	rw		rw	rw	rw	rw	rw		rw		rw	rw	rw	rw	rw

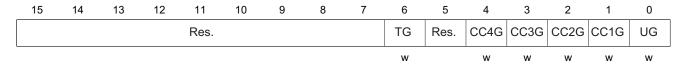
Bit	Field	Туре	Reset	Description
15	Reserved			保留, 读为 0

Bit	Field	Туре	Reset	Description
14	TDE	rw	0x00	允许触发 DMA 请求 (Trigger DMA request enable)
				0: 禁止触发 DMA 请求
				1: 允许触发 DMA 请求
13	Reserved			保留, 读为 0
12	CC4DE	rw	0x00	允许捕获/比较 4 的 DMA 请求 (Capture/Compare 4 DMA
				request enable)
				0: 禁止捕获/比较 4 的 DMA 请求
				1: 允许捕获/比较 4 的 DMA 请求
11	CC3DE	rw	0x00	允许捕获/比较 3 的 DMA 请求 (Capture/Compare 3 DMA
				request enable)
				0: 禁止捕获/比较 3 的 DMA 请求
				1: 允许捕获/比较 3 的 DMA 请求
10	CC2DE	rw	0x00	允许捕获/比较 2 的 DMA 请求 (Capture/Compare 2 DMA
				request enable)
				0: 禁止捕获/比较 2 的 DMA 请求
•	00455		0.00	1: 允许捕获/比较 2 的 DMA 请求
9	CC1DE	rw	0x00	允许捕获/比较 1 的 DMA 请求 (Capture/Compare 1 DMA
				request enable)
				0: 禁止捕获/比较 1 的 DMA 请求
0	LIDE		000	1: 允许捕获/比较 1 的 DMA 请求
8	UDE	rw	0x00	允许更新的 DMA 请求 (Update DMA request enable) 0: 禁止更新的 DMA 请求
				1: 允许更新的 DMA 请求
7	Reserved			保留, 读为 0
6	TIE	rw	0x00	触发中断使能 (Trigger interrupt enable)
U	116	I VV	0,000	0: 禁止触发中断
				1: 使能触发中断
5	Reserved			保留, 读为 0
4	CC4IE	rw	0x00	允许捕获/比较 4 中断 (Capture/Compare 4 interrupt en-
				able)
				0: 禁止捕获/比较 4 中断
				1: 允许捕获/比较 4 中断
3	CC3IE	rw	0x00	允许捕获/比较 3 中断 (Capture/Compare 3 interrupt en-
				able)
				0: 禁止捕获/比较 3 中断
				1: 允许捕获/比较 3 中断
2	CC2IE	rw	0x00	允许捕获/比较 2 中断 (Capture/Compare 2 interrupt en-
				able)
				0: 禁止捕获/比较 2 中断
				1: 允许捕获/比较 2 中断

Bit	Field	Type	Reset	Description
1	CC1IE	rw	0x00	允许捕获/比较 1 中断 (Capture/Compare 1 interrupt en-
				able)
				0:禁止捕获/比较1中断
				1: 允许捕获/比较 1 中断
0	UIE	rw	0x00	允许更新中断 (Update interrupt enable)
				0: 禁止更新中断
				1: 允许更新中断

16.4.5 状态寄存器 (TIMx_SR)

偏移地址: 0x10 复位值: 0x0000


15 14 13 12 11 10 9 7 6 5 4 3 2 1 0 CC4OF CC3OF CC2OF CC1OF TIF CC3IF CC2IF CC1IF UIF Res. Res. Res. CC4IF rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bit	Field	Type	Reset	Description
15: 13	Reserved	.,,,,,	110000	保留, 读为 0
12	CC4OF	rc_w0	0x00	捕获/比较 4 重复捕获标记 (Capture/Compare 4 overcapture flag) 参见 CC10F 描述。
11	CC3OF	rc_w0	0x00	捕获/比较 3 重复捕获标记 (Capture/Compare 3 overcapture flag) 参见 CC10F 描述。
10	CC2OF	rc_w0	0x00	捕获/比较 2 重复捕获标记 (Capture/Compare 2 overcapture flag) 参见 CC10F 描述。
9	CC1OF	rc_w0	0x00	捕获/比较 1 重复捕获标记 (Capture/Compare 1 overcapture flag) 仅当相应的通道被配置为输入捕获时,该标记可由硬件置 1。写 0 可清除该位。 0: 无重复捕获产生; 1: 计数器的值被捕获到 TIMx_CCR1 寄存器时, CC1IF 的 状态已经为 1。
8: 7	Reserved			保留, 读为 0
6	TIF	rc_w0	0x00	触发器中断标记 (Trigger interrupt flag) 当发生触发事件 (当从模式控制器处于除门控模式外的其它模式时,在 TRGI 输入端检测到有效边沿,或或门控模式下的任一边沿) 时由硬件对该位置 1。它由软件清 0。 0: 无触发器事件产生 1: 触发器中断等待响应
5	Reserved			保留, 读为 0

Bit	Field	Туре	Reset	Description
4	CC4IF	rc_w0	0x00	捕获/比较 4 中断标记 (Capture/Compare 4 interrupt flag) 参考 CC1IF 描述。
3	CC3IF	rc_w0	0x00	捕获/比较 3 中断标记 (Capture/Compare 3 interrupt flag) 参考 CC1IF 描述。
2	CC2IF	rc_w0	0x00	捕获/比较 2 中断标记 (Capture/Compare 2 interrupt flag) 参考 CC1IF 描述。
1	CC1IF	rc_w0	0x00	捕获/比较 1 中断标记 (Capture/Compare 1 interrupt flag) 如果通道 CC1 配置为输出模式: 当计数器值与比较值匹配时该位由硬件置'1',但在中心对称模式下除外(参考 TIMx_CR1 寄存器的 CMS 位)。它由软件清'0'。 0: 无匹配发生 1: TIMx_CNT 的值与 TIMx_CCR1 的值匹配如果通道 CC1 配置为输入模式: 当捕获事件发生时该位由硬件置'1',它由软件清 0 或通过读 TIMx_CCR1 清'0'。 0: 无输入捕获产生 1: 计数器值已被捕获(拷贝)至 TIMx_CCR1(在 IC1 上检测到与所选极性相同的边沿)
0	UIF	rc_w0	0x00	更新中断标记 (Update interrupt flag) 当产生更新事件时该位由硬件置'1'。它由软件清'0'。 0: 无更新事件产生 1:更新事件等待响应。当寄存器被更新时该位由硬件置'1': - 若 TIMx_CR1 寄存器的 UDIS = 0, 当 REP_CNT = 0 时产生更新事件 (重复向下计数器上溢或下溢时) - 若 TIMx_CR1 寄存器的 UDIS = 0、URS = 0, 当 TIMx_EGR 寄存器的 UG = 1 时产生更新事件 (软件对计数器 CNT 重新初始化) - 若 TIMx_CR1 寄存器的 UDIS = 0、URS = 0,当计数器 CNT 被触发事件重初始化时产生更新事件。(参考同步控制寄存器的说明)

16.4.6 事件产生寄存器 (TIMx_EGR)

偏移地址: 0x14 复位值: 0x0000

Bit	Field	Туре	Reset	Description
15: 7	Reserved			保留,读为0

Bit	Field	Туре	Reset	Description					
6	TG	W	0x00	产生触发事件 (Trigger generation) 该位由软件置'1',用于产生一个刹车事件,由硬件自动清'0'。 0: 无动作 1: TIMx_SR 寄存器的 TIF = 1, 若开启对应的中断和 DMA,则产生相应的中断和 DMA					
5	Reserved			保留, 读为 0					
4	CC4G	W	0x00	产生捕获/比较 4 事件 (Capture/Compare 4 generation) 参考 CC1G 描述。					
3	CC3G	W	0x00	产生捕获/比较 3 事件 (Capture/Compare 3 generation) 参考 CC1G 描述。					
2	CC2G	W	0x00	产生捕获/比较 2 事件 (Capture/Compare 2 generation) 参考 CC1G 描述。					
1	CC1G	W	0x00	产生捕获/比较 1 事件 (Capture/Compare 1 generation) 该位由软件置 1,用于产生一个捕获/比较事件,由硬件自动清 0。 0:无动作 1:在通道 CC1 上产生一个捕获/比较事件: 若通道 CC1 配置为输出: 设置 CC1IF=1,若开启对应的中断和 DMA,则产生相应的中断和 DMA。 若通道 CC1 配置为输入: 当前的计数器值被捕获至 TIMx_CCR1 寄存器,设置 CC1IF=1,若开启对应的中断和 DMA,则产生相应的中断和 DMA,则产生相应的中断和 DMA,则产生相应的中断和 DMA,则产生相应的中断和 DMA,则产生相应的中断和 DMA,则产生相应的中断和 DMA。若 CC1IF 已经为 1,则设置 CC1OF=1。					
0	UG	W	0x00	产生更新事件 (Update generation) 该位由软件置'1',由硬件自动清'0'。 0:无动作 1:重新初始化计数器,并产生一个更新事件。注意预分频器的计数器也被清'0'(但是预分频系数不变)。若在中心对称模式下或 DIR = 0(向上计数)则计数器被清'0';若DIR = 1(向下计数)则计数器取 TIMx_ARR 的值。					

16.4.7 捕获/比较模式寄存器 1(TIMx_CCMR1)

偏移地址: 0x18 复位值: 0x0000

通道可用于输入 (捕获模式) 或输出 (比较模式),通道的方向由相应的 CCxS 定义。该寄存器其他位的作用和输出模式下不同。OCxx 描述了通道在输出模式下的功能,ICxx 描述了通道在输出模式下的功能。因此必须注意,同一个位在输出模式和输入模式下的功能是不同的。

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OC2CE		OC2M		OC2PE	OC2FE	CC2S		OC1CE	OC1M			OC1PE	OC1FE		
	IC	2F		IC2I	PSC	CC.	23		IC	1F		IC1F	PSC	CC1S	10
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

输出比较模式:

Bit	Field	Туре	Reset	Description
15	OC2CE	rw	0x00	输出比较 2 清 0 使能 (Output compare 2 clear enable)
14: 12	OC2M	rw	0x00	输出比较 2 模式 (Output compare 2 mode)
11	OC2PE	rw	0x00	输出比较 2 预装载使能 (Output compare 2 preload en-
				able)
10	OC2FE	rw	0x00	输出比较 2 快速使能 (Output compare 4 fast enable)
9: 8	CC2S	rw	0x00	捕获/比较 2 选择 (Capture/Compare 2 selection)
				该位定义通道的方向(输入/输出),及输入脚的选择:
				00: CC2 通道被配置为输出
				01: CC2 通道被配置为输入, IC2 映射在 TI2 上
				10: CC2 通道被配置为输入, IC2 映射在 TI1 上
				11: CC2 通道被配置为输入, IC2 映射在 TRC 上。此模式
				仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存
				器的 TS 位选择)
				注: CC2S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC2E = 0)
				才是可写的。
7	OC1CE	rw	0x00	输出比较 1 清 0 使能 (Output compare 1 clear enable)
				0: OC1REF 不受 ETRF 输入的影响
				1: 当检测到 ETRF 输入高电平时,清除 OC1REF = 0

Bit	Field	Туре	Reset	Description
6: 4	OC1M	ΓW	0x00	输出比较 1 模式 (Output compare 1 mode) 该 3 位定义了输出参考信号 OC1REF 的动作,而 OC1REF 决定了 OC1、OC1N 的值。OC1REF 是高电平有效,而 OC1、OC1N 的有效电平取决于 CC1P、CC1NP 位。 000: 冻结。输出比较寄存器 TIMx_CCR1 与计数器 TIMx_CNT 间的比较对 OC1REF 不起作用 001: 匹配时设置通道 1 为有效电平。当计数器 TIMx_CNT 的值与捕获/比较寄存器 1(TIMx_CCR1) 相同时,强制 OC1REF 为高 010: 匹配时设置通道 1 为无效电平。当计数器 TIMx_CNT 的值与捕获/比较寄存器 1(TIMx_CCR1) 相同时,强制 OC1REF 为低 011: 翻转。当 TIMx_CCR1=TIMx_CNT 时,翻转 OC1REF 的电平 100: 强制为无效电平。强制 OC1REF 为低 101: 强制为有效电平。强制 OC1REF 为高 110: PWM 模式 1 - 在向上计数时,当 TIMx_CNT < TIMx_CCR1 时通道 1 为有效电平,否则为无效电平;在向下计数时,当 TIMx_CNT > TIMx_CCR1 时通道 1 为无效电平(OC1REF = 1) 111: PWM 模式 2 - 在向上计数时,当 TIMx_CNT < TIMx_CCR1 时通道 1 为无效电平,否则为有效电平;在向下计数时,当 TIMx_CNT > TIMx_CCR1 时通道 1 为有效电平,否则为有效电平;在向下计数时,当 TIMx_CNT > TIMx_CCR1 时通道 1 为有效电平,否则为无效电平;在向下计数时,当 TIMx_CNT > TIMx_CCR1 时通道 1 为有效电平,否则为无效电平;注 1: 当 LOCK 级别设为 3(TIMx_BDTR 寄存器中的 LOCK 位)并且 CC1S = 00(该通道配置成输出)时,该位不能被修改。注 2: 在 PWM 模式 1 或 PWM 模式 2 中,只有当比较结果改变了或在输出比较模式中从冻结模式切换到 PWM 模式时,OC1REF电平力改变。
3	OC1PE	rw	0x00	输出比较 1 预装载使能 (Output compare 1 preload enable) 0: 禁止 TIMx_CCR1 寄存器的预装载功能,可随时写入 TIMx_CCR1 寄存器,并且新写入的数值立即起作用 1: 开启 TIMx_CCR1 寄存器的预装载功能,读写操作仅对预装载寄存器操作,TIMx_CCR1 的预装载值在更新事件到来时被加载至当前寄存器中 注1: 当 LOCK 级别设为 3(TIMx_BDTR 寄存器中的 LOCK 位)并且 CC1S = 00(该通道配置成输出)时,该位不能被修改。 注2: 仅在单脉冲模式下 (TIMx_CR1 寄存器的 OPM = 1),可以在未确认预装载寄存器情况下使用 PWM 模式,否则其动作不确定。

Bit	Field	Туре	Reset	Description
2	OC1FE	rw	0x00	输出比较 1 快速使能 (Output compare 1 fast enable)
				该位用于加快 CC 输出对触发输入事件的响应。
				0:根据计数器与 CCR1 的值, CC1 正常操作,即使触发
				器是打开的。当触发器的输入有一个有效沿时,激活 CC1
				输出的最小延时为 5 个时钟周期
				1:输入到触发器的有效沿的作用就象发生了一次比较匹配。
				因此, OC 被设置为比较电平而与比较结果无关。采样触发
				器的有效沿和 CC1 输出间的延时被缩短为 3 个时钟周期。
				OCFE 只在通道被配置成 PWM1 或 PWM2 模式时起作用
1: 0	CC1S	rw	0x00	捕获/比较 1 选择 (Capture/Compare 1 selection)
				这 2 位定义通道的方向 (输入/输出),及输入脚的选择:
				00: CC1 通道被配置为输出
				01: CC1 通道被配置为输入,IC1 映射在 TI1 上
				10: CC1 通道被配置为输入,IC1 映射在 TI2 上
				11: CC1 通道被配置为输入, IC1 映射在 TRC 上, 此模式
				仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存
				器的 TS 位选择)
				注: CC1S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC1E = 0)
				才是可写的。

输入捕获模式:

Bit	Field	Туре	Reset	Description
15: 12	IC2F	rw	0x00	输入捕获 2 滤波器 (Input capture 2 filter)
11: 10	IC2PSC	rw	0x00	输入/捕获 2 预分频器 (Input capture 2 prescaler)
9: 8	CC2S	rw	0x00	捕获/比较 2 选择 (Capture/Compare 2 selection) 这 2 位定义通道的方向 (输入/输出),及输入脚的选择: 00: CC2 通道被配置为输出 01: CC2 通道被配置为输入,IC2 映射在 TI2 上 10: CC2 通道被配置为输入,IC2 映射在 TI1 上 11: CC2 通道被配置为输入,IC2 映射在 TRC 上,此模式仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存器的 TS 位选择) 注: CC2S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC2E = 0) 才是可写的。

Bit	Field	Туре	Reset	Description
7: 4	IC1F	rw -	0x00	输入捕获 1 滤波器 (Input capture 1 filter) 这几位定义了 TI1 输入的采样频率及数字滤波器长度。数字滤波器由一个事件计数器组成,它记录到 N 个事件后会产生一个输出的跳变: 0000: 无滤波器,以 fDTS 采样 1000: 采样频率 f _{SAMPLING} =f _{DTS} /8, N = 6 0001: 采样频率 f _{SAMPLING} =f _{CK_INT} , N = 2 1001: 采样频率 f _{SAMPLING} =f _{CK_INT} , N = 4 1010: 采样频率 f _{SAMPLING} =f _{CK_INT} , N = 4 1010: 采样频率 f _{SAMPLING} =f _{DTS} /16, N = 5 0011: 采样频率 f _{SAMPLING} =f _{DTS} /16, N = 6 1010: 采样频率 f _{SAMPLING} =f _{DTS} /16, N = 6 1100: 采样频率 f _{SAMPLING} =f _{DTS} /2, N = 6 1100: 采样频率 f _{SAMPLING} =f _{DTS} /2, N = 8 1101: 采样频率 f _{SAMPLING} =f _{DTS} /32, N = 5 0110: 采样频率 f _{SAMPLING} =f _{DTS} /4, N = 6 1110: 采样频率 f _{SAMPLING} =f _{DTS} /4, N = 6 1111: 采样频率 f _{SAMPLING} =f _{DTS} /4, N = 8 1111: 采样频率 f _{SAMPLING} =f _{DTS} /4, N = 8
3: 2	IC1PSC	rw	0x00	输入/捕获 1 预分频器 (Input capture 1 prescaler) 这 2 位定义了 CC1 输入 (IC1) 的预分频系数。 当 CC1E = 0(TIMx_CCER 寄存器中) 时,预分频器复位。 00: 无预分频器,捕获输入口上检测到的每一个边沿都触发一次捕获 01: 每 2 个事件触发一次捕获 10: 每 4 个事件触发一次捕获 11: 每 8 个事件触发一次捕获
1: 0	CC1S	rw	0x00	捕获/比较 1 选择 (Capture/compare 1 selection) 这 2 位定义通道的方向 (输入/输出),及输入脚的选择: 00: CC1 通道被配置为输出 01: CC1 通道被配置为输入,IC1 映射在 TI1 上 10: CC1 通道被配置为输入,IC1 映射在 TI2 上 11: CC1 通道被配置为输入,IC1 映射在 TRC 上,此模式仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存器的 TS 位选择) 注: CC1S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC1E = 0) 才是可写的。

16.4.8 捕获/比较模式寄存器 2(TIMx_CCMR2)

偏移地址: 0x1C 复位值: 0x0000

参看以上 CCMR1 寄存器的描述

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OC4CE		OC4M		OC4PE	OC4FE			OC3CE		OC3M		OC3PE	OC3FE	CC	36
	IC	4F		IC4I	PSC	CC4S			IC	3F		IC3F	PSC		00
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

输出比较模式

Bit	Field	Туре	Reset	Description
15	OC4CE	rw	0x00	输出比较 4 清 0 使能 (Output compare 4 clear enable)
14: 12	OC4M	rw	0x00	输出比较 4 模式 (Output compare 4 mode)
11	OC4PE	rw	0x00	输出比较 4 预装载使能 (Output compare 4 preload enable)
10	OC4FE	rw	0x00	输出比较 4 快速使能 (Output compare 4 fast enable)
9: 8	CC4S	rw	0x00	捕获/比较 4 选择 (Capture/Compare 4 selection) 该 2 位定义通道的方向 (输入/输出),及输入脚的选择: 00: CC4 通道被配置为输出 01: CC4 通道被配置为输入,IC4 映射在 TI4 上 10: CC4 通道被配置为输入,IC4 映射在 TI3 上 11: CC4 通道被配置为输入,IC4 映射在 TRC 上,此模式仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存器的 TS 位选择) 注: CC4S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC4E = 0) 才是可写的。
7	OC3CE	rw	0x00	输出比较 3 清 '0' 使能 (Output compare 3 clear enable)
6: 4	OC3M	rw	0x00	输出比较 3 模式 (Output compare 3 mode)
3	OC3PE	rw	0x00	输出比较 3 预装载使能 (Output compare 3 preload enable)
2	OC3FE	rw	0x00	输出比较 3 快速使能 (Output compare 3 fast enable)
1: 0	CC3S	rw	0x00	捕获/比较 3 选择 (Capture/Compare 3 selection) 这 2 位定义通道的方向 (输入/输出),及输入脚的选择: 00: CC3 通道被配置为输出 01: CC3 通道被配置为输入,IC3 映射在 TI3 上 10: CC3 通道被配置为输入,IC3 映射在 TI4 上 11: CC3 通道被配置为输入,IC3 映射在 TRC 上,此模式仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存器的 TS 位选择) 注: CC3S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC3E = 0) 才是可写的。

输入捕获模式

Bit	Field	Туре	Reset	Description
15: 12	IC4F	rw	0x00	输入捕获 4 滤波器 (Input capture 4 filter)
11: 10	IC4PSC	rw	0x00	输入/捕获 4 预分频器 (Input capture 4 prescaler)
9: 8	CC4S	rw	0x00	捕获/比较 4 选择 (Capture/Compare 4 selection) 这 2 位定义通道的方向 (输入/输出),及输入脚的选择: 00: CC4 通道被配置为输出 01: CC4 通道被配置为输入,IC4 映射在 TI4 上 10: CC4 通道被配置为输入,IC4 映射在 TI3 上 11: CC4 通道被配置为输入,IC4 映射在 TRC 上,此模式仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存器的 TS 位选择) 注: CC4S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC4E = 0) 才是可写的。
7: 4	IC3F	rw	0x00	输入捕获 3 滤波器 (Input capture 3 filter)
3: 2	IC3PSC	rw	0x00	输入/捕获 3 预分频器 (Input capture 3 prescaler)
1: 0	CC3S	rw	0x00	捕获/比较 3 选择 (Capture/compare 3 selection) 这 2 位定义通道的方向 (输入/输出),及输入脚的选择: 00: CC3 通道被配置为输出 01: CC3 通道被配置为输入,IC3 映射在 TI3 上 10: CC3 通道被配置为输入,IC3 映射在 TI4 上 11: CC3 通道被配置为输入,IC3 映射在 TRC 上,此模式仅工作在内部触发器输入被选中时(由 TIMx_SMCR 寄存器的 TS 位选择) 注: CC3S 仅在通道关闭时(TIMx_CCER 寄存器的 CC3E = 0) 才是可写的。

16.4.9 捕获/比较使能寄存器 (TIMx_CCER)

偏移地址: 0x20 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Re	S.	CC4P	CC4E	Re	s.	CC3P	CC3E	Res.		CC2P	CC2E	R	es.	CC1P	CC1E
		rw	rw			rw	rw			rw	rw			rw	rw

Bit	Field	Туре	Reset	Description
15: 14	Reserved			保留, 读为 0
13	CC4P	rw	0x00	输入/捕获 4 输出极性 (Capture/Compare 4 output polarity) 参考 CC1P 的描述。
12	CC4E	rw	0x00	输入/捕获 4 输出使能 (Capture/Compare 4 output enable) 参考 CC1E 的描述。
11: 10	Reserved			保留, 读为 0
9	CC3P	rw	0x00	输入/捕获 3 输出极性 (Capture/Compare 3 output polarity) 参考 CC1P 的描述。

Bit	Field	Туре	Reset	Description			
8	CC3E	rw	0x00	输入/捕获 3 输出使能 (Capture/Compare 3 output enable)			
				参考 CC1E 的描述。			
7: 6	Reserved			保留, 读为 0			
5	CC2P	rw	0x00	输入/捕获 2 输出极性 (Capture/Compare 2 output polarity)			
				参考 CC1P 的描述。			
4	CC2E	rw	0x00	输入/捕获 2 输出使能 (Capture/Compare 2 output enable)			
				参考 CC1E 的描述。			
3: 2	Reserved			保留, 读为 0			
1	CC1P	rw	0x00	输入/捕获 1 输出极性 (Capture/Compare 1 output polarity)			
				CC1 通道配置为输出:			
				0: OC1 高电平有效			
				1: OC1 低电平有效			
				CC1 通道配置为输入:			
				CC1NP/CC1P 共同选择是 IC1 还是 IC1 的反相信号作为			
				触发或捕获信号。			
				00: 不反相: 捕获发生在 IC1 的上升沿; 当用作外部触发			
				器时,IC1 不反相。			
				01: 反相: 捕获发生在 IC1 的下降沿; 当用作外部触发器			
				时, IC1 反相。			
				10: 保留。			
				11: 同时捕获双沿。			
				注: 当 LOCK 级别 (TIMx_BDTR 寄存器中的 LCCK 位) 设为 3 或			
				2 时,该位不能被修改。			
0	CC1E	rw	0x00	输入/捕获 1 输出使能 (Capture/Compare 1 output enable)			
				CC1 通道配置为输出:			
				0: 关闭 - OC1 禁止输出,因此 OC1 的输出电平依赖于			
				MOE、OSSI、OSSR、OIS1、OIS1N 和 CC1NE 位的值			
				1: 开启 - OC1 信号输出到对应的输出引脚, 其输出电平依			
				赖于 MOE、OSSI、OSSR、OIS1、OIS1N 和 CC1NE 位			
				的值			
				CC1 通道配置为输入:			
				该位决定了计数器的值是否能捕获入TIMx_CCR1寄存器。			
				0: 捕获禁止			
				1: 捕获使能			

表 47. 标准 Ocx 通道的输出控制位

CCxE 位	OCx 输出状态
0	禁止输出 (OCx = 0,OCx_EN = 0)
1	OCx = OCxREF + 极性,OCx_EN = 1

注:管脚连接到标准的 OCx 通道的外部 I/O 管脚的状态,取决于 OCx 通道状态和 GPIO 以及 AFIO 寄存器。

16.4.10 计数器 (TIMx_CNT)

偏移地址: 0x24 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CN	١T							
rw															

Bit	Field	Туре	Reset	Description
15: 0	CNT	rw	0x0000	计数器的值 (Counter value)

16.4.11 预分频器 (TIMx_PSC)

偏移地址: 0x28 复位值: 0x0000

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								PS	SC							
L	W1.47	W1 4.7	w	w	w	w	w	w	wa		Wh a r	wa	wa.,	w	WI A /	
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
15: 0	PSC	rw	0x0000	预分频器的值 (Prescaler value)
				计数器的时钟频率 (CK_CNT) 等于 f _{CK_PSC} /(PSC + 1)。
				PSC 包含了每次当更新事件产生时,装入当前预分频器寄
				存器的值。更新事件包括计数器被 TIM_EGR 的 UG 位清
				'0'或被工作在复位模式的从控制器清'0'。

16.4.12 自动装载寄存器 (TIMx_ARR)

偏移地址: 0x2C 复位值: 0x0000

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								AF	RR							
Į								, ,								
	rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bit	Field	Туре	Reset	Description
15: 0	ARR	rw	0x0000	自动重装载的值 (Prescaler value)
				ARR 包含了将要装载入实际的自动重装载寄存器的数值。
				详细参考小节 17.3.1:有关 ARR 的更新和动作。
				当自动重装载的值为空时,计数器不工作。

16.4.13 捕获/比较寄存器 1(TIMx_CCR1)

偏移地址: 0x34

复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CC	R1							
rw															

Bit	Field	Type	Reset	Description
15: 0	CCR1	rw	0x0000	捕获/比较 1 的值 (Capture/Compare 1 value)
				若 CC1 通道配置为输出:
				CCR1 包含了装入当前捕获/比较 1 寄存器的值 (预装载
				值)。
				如果在 TIMx_CCMR1 寄存器 (OC1PE 位) 中未选择预装
				载功能,写入的数值会立即传输至当前寄存器中。否则只有
				当更新事件发生时,此预装载值才传输至当前捕获/比较 1
				寄存器中。当前捕获/比较寄存器参与同计数器 TIMx_CNT
				的比较,并在 OC1 端口上产生输出信号。
				若 CC1 通道配置为输入:
				CCR1 包含了由上一次输入捕获 1 事件 (IC1) 传输的计数
				器值。

16.4.14 捕获/比较寄存器 2(TIMx_CCR2)

偏移地址: 0x38 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CC	R2							
rw															

Bit	Field	Туре	Reset	Description
15: 0	CCR2	rw	0x0000	捕获/比较 2 的值 (Capture/Compare 2 value)
				若 CC2 通道配置为输出:
				CCR2 包含了装入当前捕获/比较 2 寄存器的值 (预装载
				值)。
				如果在 TIMx_CCMR2 寄存器 (OC2PE 位) 中未选择预装
				载特性,写入的数值会立即传输至当前寄存器中。否则只有
				当更新事件发生时,此预装载值才传输至当前捕获/比较 2
				寄存器中。当前捕获/比较寄存器参与同计数器 TIMx_CNT
				的比较,并在 OC2 端口上产生输出信号。
				若 CC2 通道配置为输入:
				CCR2 包含了由上一次输入捕获 2 事件 (IC2) 传输的计数
				器值。

16.4.15 捕获/比较寄存器 3(TIMx_CCR3)

偏移地址: 0x3C 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CC	R3							
rw															

Bit	Field	Туре	Reset	Description
15: 0	CCR3	rw	0x0000	捕获/比较 3 的值 (Capture/Compare 3 value)
				若 CC3 通道配置为输出:
				CCR3 包含了装入当前捕获/比较 3 寄存器的值 (预装载
				值)。
				如果在 TIMx_CCMR3 寄存器 (OC3PE 位) 中未选择预装
				载特性,写入的数值会立即传输至当前寄存器中。否则只有
				当更新事件发生时,此预装载值才传输至当前捕获/比较3
				寄存器中。当前捕获/比较寄存器参与同计数器 TIMx_CNT
				的比较,并在 OC3 端口上产生输出信号。若 CC3 通道配
				置为输入:
				CCR3 包含了由上一次输入捕获 3 事件 (IC3) 传输的计数
				器值。

16.4.16 捕获/比较寄存器 4(TIMx_CCR4)

偏移地址: 0x40 复位值: 0x0000

15 14 13 12 11 10 9 6 5 0 2 CCR4 rw rw rw rw

Bit	Field	Туре	Reset	Description
15: 0	CCR4	rw	0x0000	捕获/比较 4 的值 (Capture/Compare 4 value)
				若 CC4 通道配置为输出:
				CCR4 包含了装入当前捕获/比较 4 寄存器的值 (预装载
				值)。
				如果在 TIMx_CCMR4 寄存器 (OC4PE 位) 中未选择预装
				载特性,写入的数值会立即传输至当前寄存器中。否则只有
				当更新事件发生时,此预装载值才传输至当前捕获/比较 4
				寄存器中。当前捕获/比较寄存器参与同计数器 TIMx_CNT
				的比较,并在 OC4 端口上产生输出信号。
				若 CC4 通道配置为输入:
				CCR4 包含了由上一次输入捕获 4 事件 (IC4) 传输的计数
				器值。

16.4.17 DMA 控制寄存器 (TIMx_DCR)

偏移地址: 0x48 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Res.				DBL				Res.				DBA		
			W	w	W	w	w				w	w	W	w	w

Bit	Field	Туре	Reset	Description
15: 13	Reserved			保留,始终读为0。
12: 8	DBL	W	0x00	DMA 连续传送长度 (DMA burst length)
				这些位定义了 DMA 在连续模式下的传送长度 (当对
				TIMx_DMAR 寄存器进行写操作时,定时器则进行一次连
				续传送),即:定义传输的次数,传输可以是半字(双字节)
				或字节:
				00000: 1 次传输 00001: 2 次传输
				00010: 3 次传输
				10001: 18 次传输
				例:我们考虑这样的传输:DBL = 7,DBA = TIM2_CR1
				- 如果 DBL = 7, DBA = TIM2_CR1 表示待传输数据的地址,
				那么传输的地址由下式给出:
				(TIMx_CR1 的地址)+ DBA +(DMA 索引), 其中 DMA 索引
				= DBL
				其中 (TIMx_CR1 的地址)+ DBA 再加上 7,给出了将要写
				入或者读出数据的地址,这样数据的传输将发生在从地址
				(TIMx_CR1 的地址)+ DBA 开始的 7 个寄存器。根据 DMA
				数据长度的设置,可能发生以下情况:
				- 如果设置数据为半字 (16位), 那么数据就会传输给全部 7
				个寄存器。
				- 如果设置数据为字节,数据仍然会传输给全部7个寄存器:
				第一个寄存器包含第一个 MSB 字节, 第二个寄存器包含第
				一个 LSB 字节,以此类推。因此对于定时器,用户必须指
				定由 DMA 传输的数据宽度。
7: 5	Reserved			保留,始终读为0。
4: 0	DBA	W	0x00	DMA 基地址 (DMA base address) 这些位定义了 DMA 在
				连续模式下的基地址 (当对 TIMx_DMAR 寄存器进行写操
				作时), DBA 定义为从 TIMx_CR1 寄存器所在地址开始的
				偏移量:
				00000: TIMx_CR1
				00001: TIMx_CR2
				00010: TIMx_SMCR

16.4.18 连续模式的 DMA 地址 (TIMx_DMAR)

偏移地址: 0x4C

复位值: 0x0000

1	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DMAB															
,	N	W	W	W	W	W	W	W	W	W	W	W	W	W	W	w

Bit	Field	Туре	Reset	Description
15: 0	DMAB	W	0x0000	DMA 连续传送寄存器 (DMA register for burst accesses) 对 TIMx_DMAR 寄存器的写操作会导致对以下地址所在寄存器的存取操作:
				TIMx_CR1 地址 + DBA + DMA 索引, 其中: 'TIMx_CR1 地址'是控制寄存器 1(TIMx_CR1) 所在的地址; 'DBA'是 TIMx_DCR 寄存器中定义的基地址; 'DMA 索引'是由 DMA 自动控制的偏移量, 它取决于 TIMx DCR 寄存器中定义的 DBL。

17

32 位通用定时器 (TIMx32 Bit)

32 位通用定时器 (TIMx32 Bit)

17.1 TIMx 简介

通用定时器是一个通过可编程预分频器驱动的 32 位自动装载计数器构成。它适用于多种场合,包括测量输入信号的脉冲长度 (输入捕获)或者产生输出波形 (输出比较和 PWM)。

使用定时器预分频器和 RCC 时钟控制器预分频器,脉冲长度和波形周期可以在几个微秒 到几个毫秒间调整。

TIMx 定时器是完全独立的,而且没有互相共享任何资源。它们可以一起同步操作。

17.2 TIMx 主要功能

通用 TIMx(TIM2) 定时器功能包括:

- 32 位向上、向下、向上/向下自动装载计数器
- 16 位可编程 (可以实时修改) 预分频器, 计数器时钟频率的分频系数为 1~65536 之间的任意数值
- 4 个独立的通道
 - 输入捕获
 - 输出比较
 - PWM 生成 (边缘或中间对齐模式)
 - 单脉冲模式输出
- 使用外部信号控制定时器和定时器互连的同步电路
- 如下事件发生时产生中断/DMA:
 - 更新: 计数器向上溢出/向下溢出, 计数器初始化 (通过软件或者内部/外部触发)
 - 触发事件(计数器启动、停止、初始化或者由内部/外部触发计数)
 - 输入捕获
 - 输出比较
- 支持针对定位的增量 (正交) 编码器和霍尔传感器电路
- 触发输入作为外部时钟或者按周期的电流管理

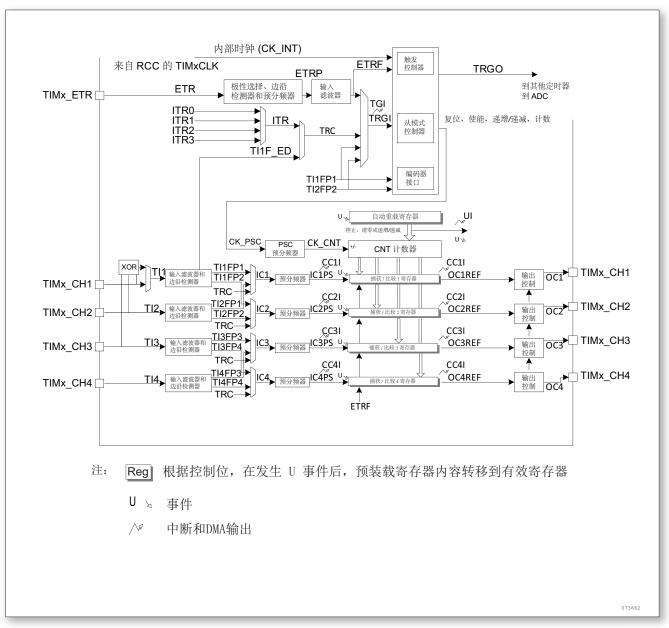


图 126. 通用定时器框图

17.3 TIMx 功能描述

17.3.1 时基单元

可编程通用定时器的主要部分是一个 32 位计数器和与其相关的自动装载寄存器。这个计数器可以向上计数、向下计数或者向上向下双向计数。此计数器时钟由预分频器分频得到。 计数器、自动装载寄存器和预分频器寄存器可以由软件读写,在计数器运行时仍可以读写,时基单元包含:

- 计数器寄存器 (TIMx CNT)
- 预分频器寄存器 (TIMx_PSC)
- 自动装载寄存器 (TIMx_ARR)

自动装载寄存器是预先装载的,写或读自动重装载寄存器将访问预装载寄存器。根据在 TIMx

_CR1 寄存器中的自动装载预装载使能位 (ARPE) 的设置,预装载寄存器的内容被立即或在每次的更新事件 UEV 时传送到影子寄存器。当计数器达到溢出条件 (向下计数时的下溢条件) 并当 TIMx_CR1 寄存器中的 UDIS 位等于 0 时,产生更新事件。更新事件也可以由软件产生。随后会详细描述每一种配置下更新事件的产生。

计数器由预分频器的时钟输出 CK_CNT 驱动,仅当设置了计数器 TIMx_CR1 寄存器中的 计数器使能位 (CEN) 时, CK_CNT 才有效。(有关计数器使能的细节,请参见控制器的从模式描述)。

预分频器描述

预分频器可以将计数器的时钟频率按 1 ~ 65536 之间的任意值分频。它是基于一个 (在 TIMx_PSC 寄存器中的)16 位寄存器控制的 32 位计数器。因为这个控制寄存器带有缓冲器,它能够在工作时被改变。新的预分频器的参数在下一次更新事件到来时被采用。

下面两个图分别给出了在预分频器运行时,更改计数器参数的例子。

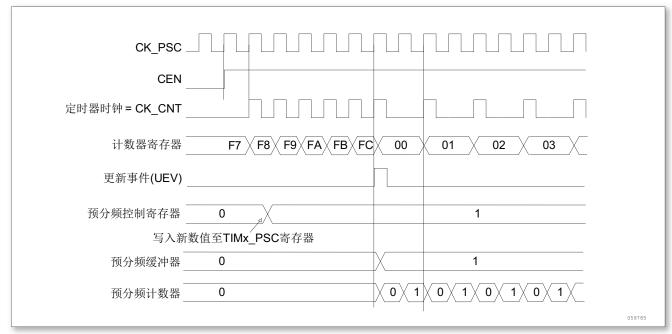


图 127. 当预分频器的参数从 1 变到 2 时, 计数器的时序图

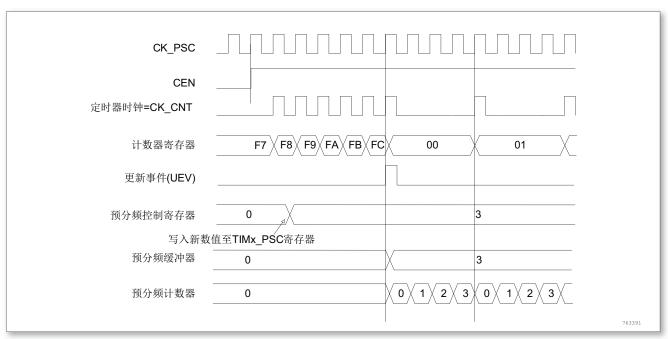


图 128. 当预分频器的参数从 1 变到 4 时, 计数器的时序图

17.3.2 计数模式

向上计数模式

在向上计数模式中,计数器从 0 计数到自动加载值 (TIMx_ARR 计数器的内容),然后重新 从 0 开始计数并且产生一个计数器溢出事件。

每次计数器溢出时可以产生更新事件,在 TIMx_EGR 寄存器中设置 UG 位 (通过软件方式或者使用从模式控制器) 也同样可以产生一个更新事件。

设置 TIMx_CR1 寄存器中的 UDIS 位,可以禁止更新事件;这样可以避免在向预装载寄存器中写入新值时更新影子寄存器。在 UDIS 位被清 0 之前,将不产生更新事件。但是在应该产生更新事件时,计数器仍会被清 0,同时预分频器的计数也被清 0(但预分频器的数值不变)。此外,如果设置了 TIMx_CR1 寄存器中的 URS 位 (选择更新请求),设置 UG 位将产生一个更新事件 UEV,但硬件不设置 UIF 标志 (即不产生中断或 DMA 请求)。这是为了避免在捕获模式下清除计数器时,同时产生更新和捕获中断。

当发生一个更新事件时,所有的寄存器都被更新,硬件同时 (依据 URS 位) 设置更新标志位 (TIMx_SR 寄存器中的 UIF 位)。

- 预分频器的缓冲区被置入预装载寄存器的值 (TIMx_PSC 寄存器的内容)
- 自动装载影子寄存器被重新置入预装载寄存器的值 (TIMx ARR)

下图给出一些例子,当 TIMx ARR = 0x36 时计数器在不同时钟频率下的动作:

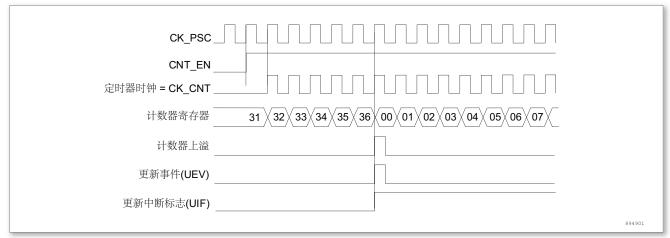


图 129. 计数器时序图,内部时钟分频因子为 1

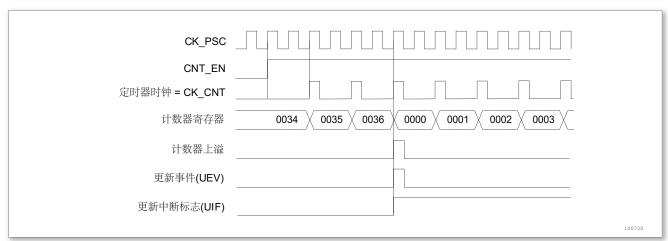


图 130. 计数器时序图,内部时钟分频因子为 2

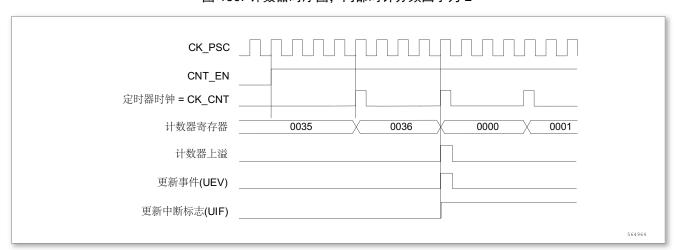


图 131. 计数器时序图,内部时钟分频因子为 4

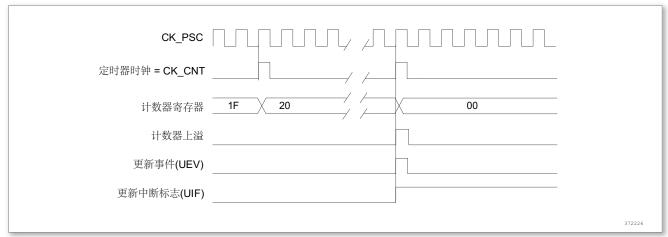


图 132. 计数器时序图,内部时钟分频因子为 N



图 133. 计数器时序图, 当 ARPE = 0 时的更新事件 (TIMx_ARR 没有预装入)

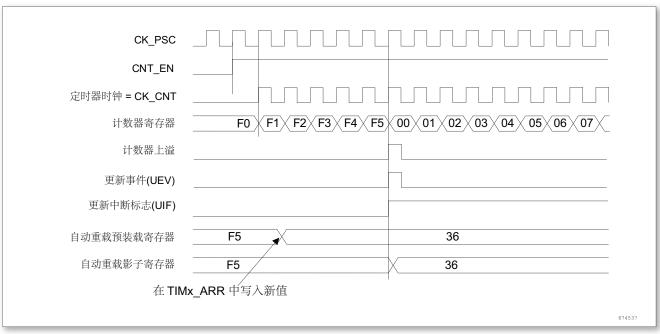


图 134. 计数器时序图, 当 ARPE = 1 时的更新事件 (预装入了 TIMx ARR)

向下计数模式

在向下模式中,计数器从自动装入的值 (TIMx_ARR 计数器的值) 开始向下计数到 0,然后从自动装入的值重新开始并且产生一个计数器向下溢出事件。

每次计数器溢出时可以产生更新事件,在 TIMx_EGR 寄存器中设置 UG 位 (通过软件方式或者使用从模式控制器) 也同样可以产生一个更新事件。

设置 TIMx_CR1 寄存器的 UDIS 位可以禁止 UEV 事件。这样可以避免向预装载寄存器中写入新值时更新影子寄存器。因此 UDIS 位被清为 0 之前不会产生更新事件。然而,计数器仍会从当前自动加载值重新开始计数,同时预分频器的计数器重新从 0 开始 (但预分频器的速率不能被修改)。

此外,如果设置了 TIMx_CR1 寄存器中的 URS 位 (选择更新请求),设置 UG 位将产生一个更新事件 UEV 但不设置 UIF 标志 (因此不产生中断和 DMA 请求),这是为了避免在发生捕获事件并清除计数器时,同时产生更新和捕获中断。

当发生更新事件时,所有的寄存器都被更新,并且(根据 URS 位的设置)更新标志位(TIMx_SR 寄存器中的 UIF 位)也被设置。

- 预分频器的缓存器被置入预装载寄存器的值 (TIMx PSC 寄存器的值)。
- 当前的自动加载寄存器被更新为预装载值 (TIMx_ARR 寄存器中的内容)。

注: 自动装载在计数器重载入之前被更新, 因此下一个周期将是预期的值。

以下是一些当 TIMx_ARR = 0x36 时, 计数器在不同时钟频率下的操作实例:

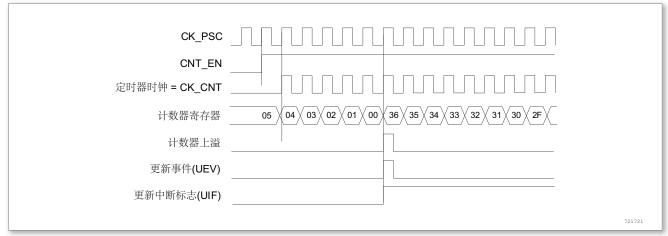


图 135. 计数器时序图,内部时钟分频因子为 1

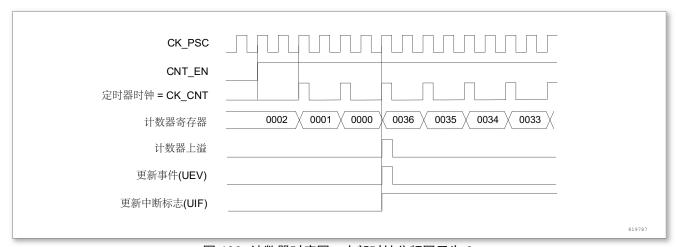


图 136. 计数器时序图,内部时钟分频因子为 2

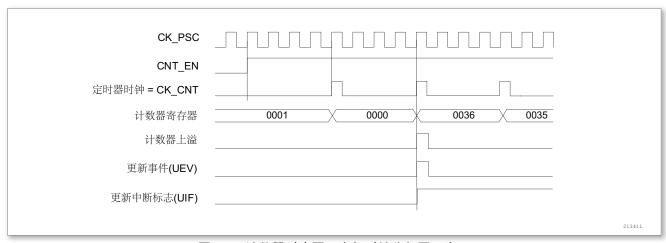


图 137. 计数器时序图,内部时钟分频因子为 4

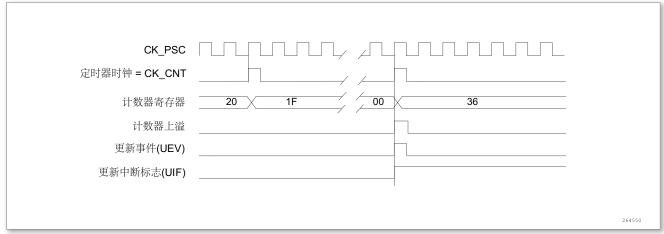


图 138. 计数器时序图,内部时钟分频因子为 N

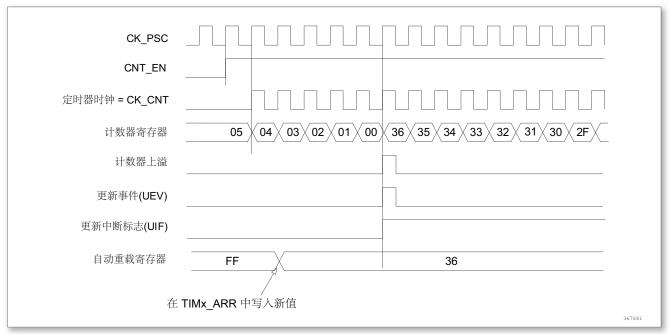


图 139. 计数器时序图, 当没有使用重复计数器时的更新事件

中央对齐模式 (向上/向下计数)

在中央对齐模式,计数器从 0 开始计数到自动加载的值 (TIMx_ARR 寄存器)-1,产生一个计数器溢出事件,然后向下计数到 1 并且产生一个计数器下溢事件;然后再从 0 开始重新计数。

在这个模式,不能写入 TIMx_CR1 中的 DIR 方向位。它由硬件更新并指示当前的计数方向。更新事件可以产生在每次计数溢出和每次计数下溢;也可以通过(软件或者使用从模式控制器)设置 TIMx_EGR 寄存器中的 UG 位产生,此时,计数器重新从 0 开始计数,预分频器也重新从 0 开始计数。

设置 TIMx_CR1 寄存器中的 UDIS 位可以禁止 UEV 事件。这样可以避免在向预装载寄存器中写入新值时更新影子寄存器。因此 UDIS 位被清为 0 之前不会产生更新事件。然而, 计数器仍会根据当前自动重加载的值,继续向上或向下计数。

此外,如果设置了 TIMx_CR1 寄存器中的 URS 位 (选择更新请求),设置 UG 位将产生一个更新事件 UEV 但不设置 UIF 标志 (因此不产生中断和 DMA 请求),这是为了避免在发生

捕获事件并清除计数器时,同时产生更新和捕获中断。

当发生更新事件时,所有的寄存器都被更新,并且(根据 URS 位的设置)更新标志位(TIMx_SR 寄存器中的 UIF 位)也被设置。

- 预分频器的缓存器被加载为预装载 (TIMx_PSC 寄存器) 的值
- 当前的自动加载寄存器被更新为预装载值 (TIMx ARR 寄存器中的内容)

注:如果因为计数器溢出而产生更新,自动重装载将在计数器重载入之前被更新,因此下一个周期将是预期的值(计数器被装载为新的值)。

以下是一些计数器在不同时钟频率下的操作的例子:

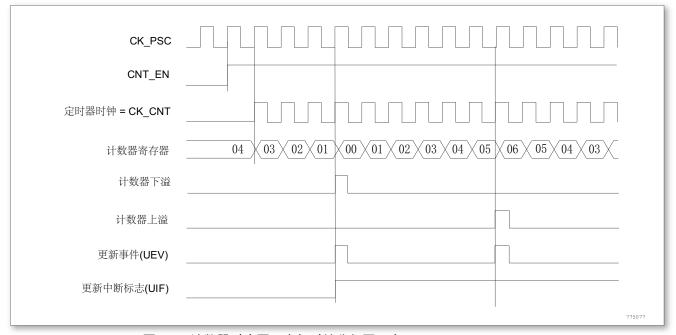


图 140. 计数器时序图,内部时钟分频因子为 1,TIMx ARR = 0x6

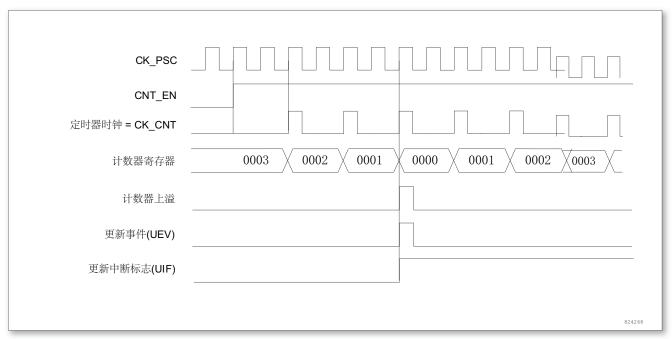


图 141. 计数器时序图,内部时钟分频因子为 2

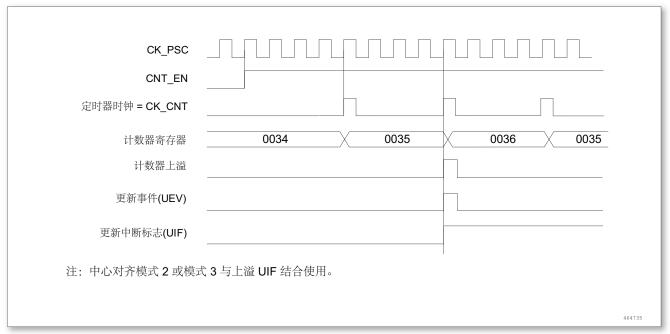


图 142. 计数器时序图,内部时钟分频因子为 4,TIMx_ARR = 0x36

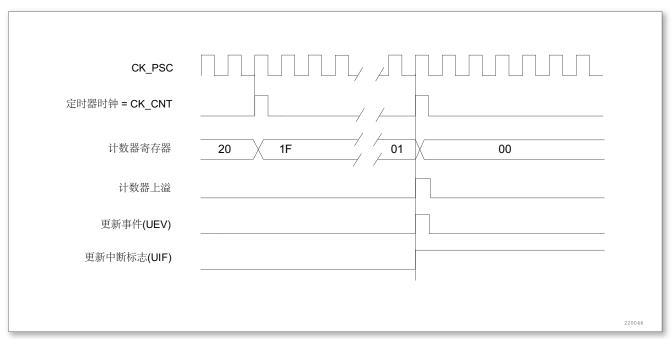


图 143. 计数器时序图,内部时钟分频因子为 N

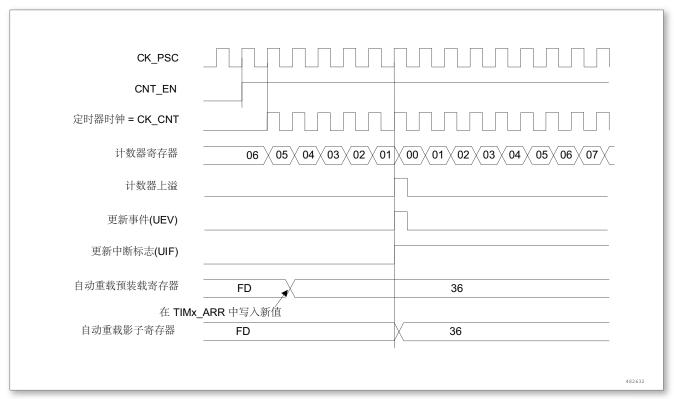


图 144. 计数器时序图, ARPE = 1 时的更新事件 (计数器下溢)



图 145. 计数器时序图, ARPE = 1 时的更新事件 (计数器溢出)

17.3.3 时钟选择

计数器时钟可由下列时钟源提供:

• 内部时钟 (CK_INT)

- 外部时钟模式 1: 外部输入脚 (Tlx)
- 外部时钟模式 2: 外部触发输入 (ETR)
- 内部触发输入 (ITRx): 使用一个定时器作为另一个定时器的预分频器,如可以配置一个定时器 Timer1 而作为另一个定时器 Timer2 的预分频器。

内部时钟源 (CK_INT)

如果禁止了从模式控制器 (SMS = 000),则 CEN、DIR(TIMx_CR1 寄存器)和 UG 位 (TIMx_EGR 寄存器)是事实上的控制位,并且只能被软件修改 (UG 位仍被自动清除)。当 CEN 位被写成 1 时,预分频器的时钟由内部时钟 CK_INT 提供。

下图显示了控制电路和向上计数器在一般模式下,不带预分频器时的操作。

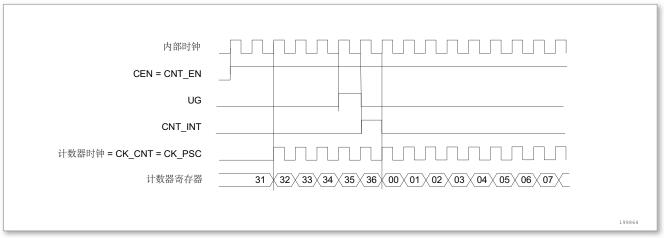


图 146. 一般模式下的控制电路,内部时钟分频因子为 1

外部时钟源模式 1

当 TIMx_SMCR 寄存器的 SMS = 111 时,此模式被选中。计数器可以在选定输入端的每个上升沿或下降沿计数。

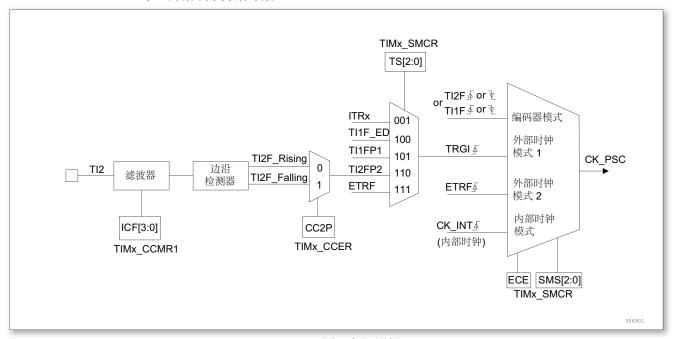


图 147. TI2 外部时钟连接例子

例如,要配置向上计数器在 T12 输入端的上升沿计数,使用下列步骤:

- 1. 配置 TIMx CCMR1 寄存器 CC2S = 01, 配置通道 2 检测 TI2 输入的上升沿
- 2. 配置 TIMx_CCMR1 寄存器的 IC2F[3: 0], 选择输入滤波器带宽 (如果不需要滤波器, 保持 IC2F = 0000)

注: 捕获预分频器不用作触发, 所以不需要对它进行配置

- 3. 配置 TIMx CCER 寄存器的 CC2P = 0, 选定上升沿极性
- 4. 配置 TIMx_SMCR 寄存器的 SMS = 111,选择定时器外部时钟模式 1
- 5. 配置 TIMx SMCR 寄存器中的 TS = 110,选定 TI2 作为触发输入源
- 6. 设置 TIMx_CR1 寄存器的 CEN = 1, 启动计数器

当上升沿出现在 TI2, 计数器计数一次, 且 TIF 标志被设置。

在 TI2 的上升沿和计数器实际时钟之间的延时取决于在 TI2 输入端的重新同步电路。

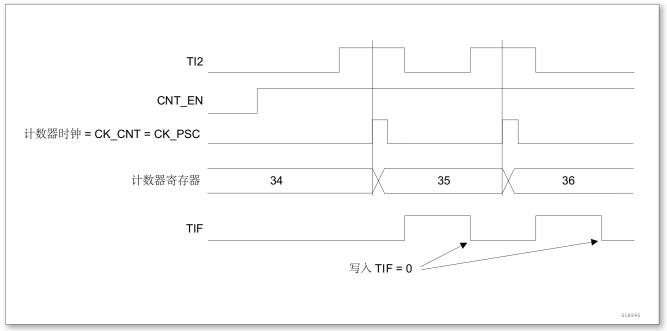


图 148. 外部时钟模式 1 下的控制电路

外部时钟源模式 2

选定此模式的方法为: 令 TIMx_SMCR 寄存器中的 ECE = 1 计数器能够在外部触发 ETR 的每一个上升沿或下降沿计数。下图是外部触发输入的总体框图:

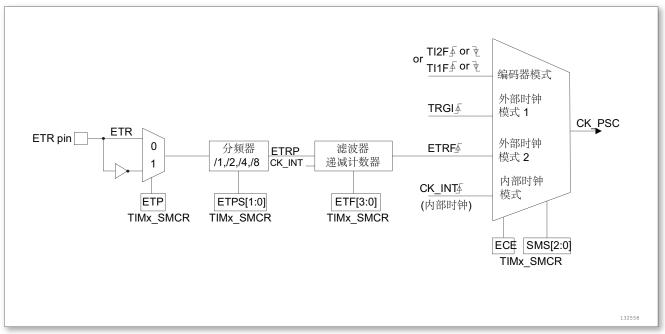


图 149. 外部触发输入框图

例如,要配置在 ETR 下每 2 个上升沿计数一次的向上计数器,使用下列步骤:

- 1. 本例中不需要滤波器,置 TIMx_SMCR 寄存器中的 ETF[3: 0] = 0000
- 2. 设置预分频器,置 TIMx_SMCR 寄存器中的 ETPS[1: 0] = 01
- 3. 设置在 ETR 的上升沿检测,置 TIMx_SMCR 寄存器中的 ETP = 0
- 4. 开启外部时钟模式 2, 置 TIMx_SMCR 寄存器中的 ECE = 1
- 5. 启动计数器,置 TIMx_CR1 寄存器中的 CEN = 1

计数器在每2个ETR上升沿计数一次。

在 ETR 的上升沿和计数器实际时钟之间的延时取决于在 ETRP 信号端的重新同步电路。

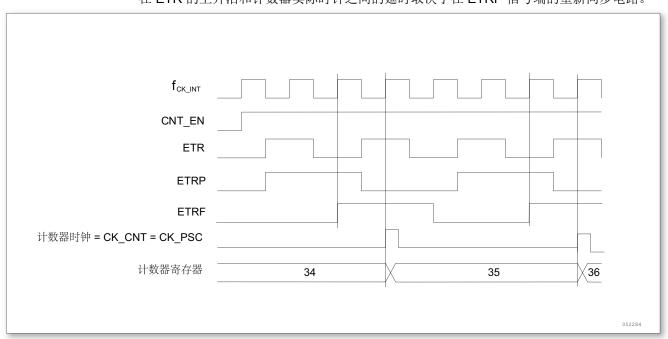


图 150. 外部时钟模式 2 下的控制电路

17.3.4 捕获/比较通道

每一个捕获/比较通道都是围绕着一个捕获/比较寄存器 (包含影子寄存器),包括捕获的输入部分 (数字滤波、多路复用和预分频器),和输出部分 (比较器和输出控制)。

下面几张图是一个捕获/比较通道概览。输入部分对相应的 Tlx 输入信号采样,并产生一个滤波后的信号 TlxF。然后,一个带极性选择的边缘监测器产生一个信号 (TlxFPx),它可以作为从模式控制器的输入触发或者作为捕获控制。该信号通过预分频进入捕获寄存器 (ICxPS)。

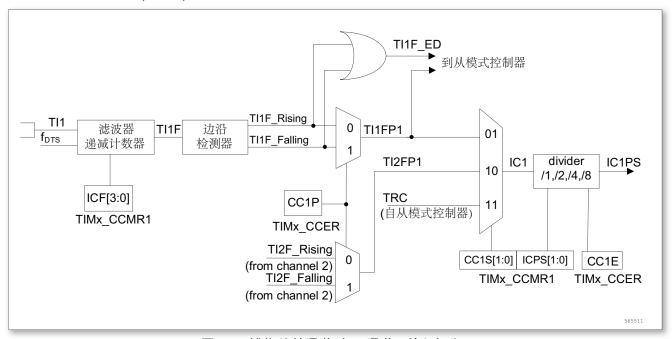


图 151. 捕获/比较通道 (如:通道 1 输入部分)

输出部分产生一个中间波形 OCxRef(高有效) 作为基准,链的末端决定最终输出信号的极性。

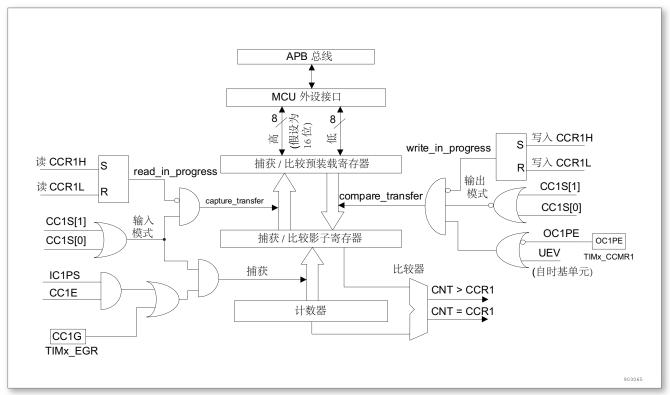


图 152. 捕获/比较通道 1 的主电路

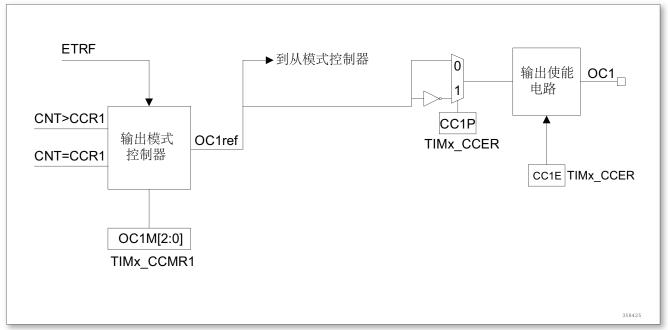


图 153. 捕获/比较通道的输出部分 (通道 1)

捕获/比较模块由一个预装载寄存器和一个影子寄存器组成。读写过程仅操作预装载寄存器。在捕获模式下,捕获发生在影子寄存器上,然后再复制到预装载寄存器中。

在比较模式下,预装载寄存器的内容被复制到影子寄存器中,然后影子寄存器的内容和计数器进行比较。

17.3.5 输入捕获模式

在输入捕获模式下,当检测到 ICx 信号上相应的边沿后,计数器的当前值被锁存到捕获/比较寄存器 (TIMx_CCRx) 中。当捕获事件发生时,相应的 CCxIF 标志 (TIMx_SR 寄存器) 被置 1,如果开放了中断或者 DMA 操作,则将产生中断或者 DMA 操作。如果捕获事件发生时 CCxIF 标志已经为高,那么重复捕获标志 CCxOF(TIMx_SR 寄存器) 被置 1。写 CCxIF = 0 可清除 CCxIF,或读取存储在 TIMx_CCRx 寄存器中的捕获数据也可清除 CCxIF。写 CCxOF = 0 可清除 CCxOF。

以下例子说明如何在 TI1 输入的上升沿时捕获计数器的值到 TIMx_CCR1 寄存器中,步骤如下:

- 选择有效输入端: TIMx_CCR1 必须连接到 TI1 输入, 所以写入 TIMx_CCR1 寄存器中的 CC1S = 01, 当 CC1S 不为 00 时,通道被配置为输入,并且 TM1_CCR1 寄存器变为只读。
- 根据输入信号的特点,配置输入滤波器为所需的带宽 (即输入为 Tlx 时,输入滤波器控制位是 TIMx_CCMRx 寄存器中的 ICxF 位)。假设输入信号在最多 5 个时钟周期的时间内抖动,我们须配置滤波器的带宽长于 5 个时钟周期。因此我们可以 (以 fDTS 频率)连续采样 8 次,以确认在 Tl1 上一次真实的边沿变换,即在 TlMx_CCMR1 寄存器中写入 IC1F = 0011。
- 选择 TI1 通道的有效转换边沿,在 TIMx_CCER 寄存器中写入 CC1P = 0(上升沿)。
- 配置输入预分频器。在本例中,我们希望捕获发生在每一个有效的电平转换时刻,因此 预分频器被禁止 (写 TIMx_CCMR1 寄存器的 IC1PS = 00)。
- 设置 TIMx_CCER 寄存器的 CC1E = 1,允许捕获计数器的值到捕获寄存器中。
- 如果需要,通过设置 TIMx_DIER 寄存器中的 CC1IE 位允许相关中断请求,通过设置 TIMx_DIER 寄存器中的 CC1DE 位允许 DMA 请求。

当一个输入捕获时:

- 当产生有效的电平转换时,计数器的值被传送到 TIMx_CCR1 寄存器。
- CC1IF 标志被设置 (中断标志)。当发生至少 2 个连续的捕获时,而 CC1IF 未曾被清除。
- CC1OF 也被置 1。
- · 如设置了 CC1IE 位,则会产生一个中断。
- 如设置了 CC1DE 位,则还会产生一个 DMA 请求。

为了处理捕获溢出,建议在读出捕获溢出标志之前读取数据,这是为了避免丢失在读出捕获溢出标志之后和读取数据之前可能产生的捕获溢出信息。

注:设置 TIMx_EGR 寄存器中相应的 CCxG 位,可以通过软件产生输入捕获中断和/或 DMA 请求。

17.3.6 PWM 输入模式

该模式是输入捕获模式的一个特例,除下列区别外,操作与输入捕获模式相同:

- 两个 ICx 信号被映射同一个 TIx 输入
- 2 个 ICx 信号为边沿有效, 但是极性相反
- 其中一个 TIxFP 信号被作为触发输入信号,而从模式控制器被配置成复位模式

例如,你需要测量输入到 TI1 上的 PWM 信号的长度 (TIMx_CCR1 寄存器) 和占空比 (TIMx_CCR2 寄存器),具体步骤如下 (取决于 CK_INT 的频率和预分频器的值)

• 选择 TIMx CCR1 的有效输入:置 TIMx CCMR1 寄存器的 CC1S = 01(选择 TI1)

- 选择 TI1FP1 的有效极性 (用来捕获数据到 TIMx_CCR1 中和清除计数器): 置 CC1P = 0(上升沿有效)。
- 选择 TIMx_CCR2 的有效输入: 置 TIMx_CCMR1 寄存器的 CC2S = 10(选择 TI1)。
- 选择 TI1FP2 的有效极性 (捕获数据到 TIMx CCR2): 置 CC2P = 1(下降沿有效)。
- 选择有效的触发输入信号: 置 TIMx SMCR 寄存器中的 TS = 101(选择 TI1FP1)。
- 配置从模式控制器为复位模式:置 TIMx SMCR中的 SMS = 100。
- 使能捕获: 置 TIMx CCER 寄存器中 CC1E = 1 且 CC2E = 1。

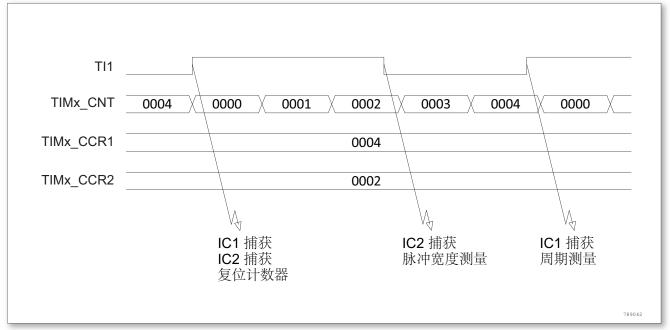


图 154. 捕获/比较通道的输出部分 (通道 1)

由于只有 TI1FP1 和 TI2FP2 连到了从模式控制器。所以 PWM 输入模式只能使用 TIMx_CH1 / TIMx_CH2 信号。

17.3.7 强制输出模式

在输出模式 (TIMx_CCMRx 寄存器中 CCxS = 00) 下,输出比较信号 (OCxREF 和相应的 OCx) 能够直接由软件强置为有效或无效状态,而不依赖于输出比较寄存器和计数器间的 比较结果。

置 TIMx_CCMRx 寄存器中相应的 OCxM = 101,即可强置输出比较信号 (OCxREF/OCx)为有效状态。这样 OCxREF 被强置为高电平 (OCxREF 始终为高电平有效),同时 OCx 得到 CCxP 极性位相反的值。例如:CCxP = 0(OCx 高电平有效),则 OCx 被强置为高电平。置 TIMx_CCMRx 寄存器中的 OCxM = 100,可强置 OCxREF 信号为低。该模式下,在 TIMx_CCRx 影子寄存器和计数器之间的比较仍然在进行,相应的标志也会被修改。因此仍然会产生相应的中断和 DMA 请求。这将会在下面的输出比较模式一节中介绍。

17.3.8 输出比较模式

此项功能是用来控制一个输出波形或者指示何时一段给定的的时间已经到时。

当计数器与捕获/比较寄存器的内容相同时,输出比较功能做如下操作:

• 将输出比较模式 (TIMx_CCMRx 寄存器中的 OCxM 位) 和输出极性 (TIMx_CCER 寄存器中的 CCxP 位) 定义的值输出到对应的管脚上。在比较匹配时,输出管脚可以保持它

的电平 (OCxM = 000)、被设置成有效电平 (OCxM = 001)、被设置成无有效电平 (OCxM = 010) 或进行翻转 (OCxM = 011)。

- 设置中断状态寄存器中的标志位 (TIMx_SR 寄存器中的 CCxIF 位)。
- 若设置了相应的中断屏蔽 (TIMx_DIER 寄存器中的 CCXIE 位),则产生一个中断。
- 若设置了相应的使能位 (TIMx_DIER 寄存器中的 CCxDE 位, TIMx_CR2 寄存器中的 CCDS 位选择 DMA 请求功能),则产生一个 DMA 请求。

TIMx_CCMRx 中的 OCxPE 位选择 TIMx_CCRx 寄存器是否需要使用预装载寄存器。在输出比较模式下,更新事件 UEV 对 OCxREF 和 OCx 输出没有影响。同步的精度可以达到计数器的一个计数周期。输出比较模式 (在单脉冲模式下) 也能用来输出一个单脉冲。

输出比较模式的配置步骤:

- 1. 选择计数器时钟 (内部,外部,预分频器)
- 2. 将相应的数据写入 TIMx_ARR 和 TIMx_CCRx 寄存器中
- 3. 如果要产生一个中断请求和/或一个 DMA 请求,设置 CCxIE 位和/或 CCxDE 位
- 4. 选择输出模式,例如: 必须设置 OCxM = '011'、OCxPE = '0'、CCxP = '0' 和 CCxE = '1', 当计数器 CNT 与 CCRx 匹配时翻转 OCx 的输出管脚, CCRx 预装载未用, 开启 OCx 输出且高电平有效
- 5. 设置 TIMx_CR1 寄存器的 CEN 位启动计数器

TIMx_CCRx 寄存器能够在任何时候通过软件进行更新以控制输出波形,条件是未使用预装载寄存器 (OCxPE = '0',否则 TIMx_CCRx 影子寄存器只能在发生下一次更新事件时被更新)。下图给出了一个例子。

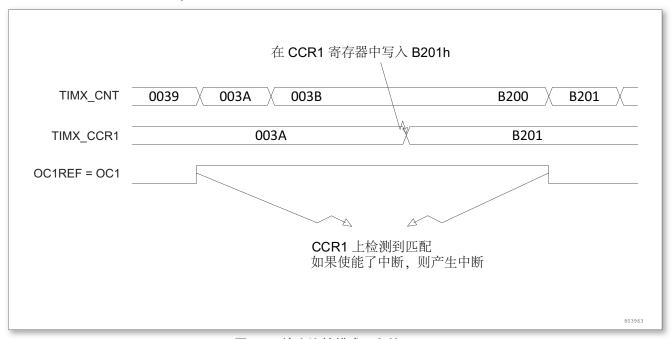


图 155. 输出比较模式, 翻转 OC1

17.3.9 PWM 模式

脉冲宽度调制模式可以产生一个由 TIMx_ARR 寄存器确定频率、由 TIMx_CCRx 寄存器确定与空比的信号。

在 TIMx_CCMRx 寄存器中的 OCxM 位写入'110'(PWM 模式 1) 或'111'(PWM 模式 2), 能够独立地设置每个 OCx 输出通道产生一路 PWM。必须设置 TIMx_CCMRx 寄存器

OCxPE 位以使能相应的预装载寄存器,最后还要设置 TIMx_CR1 寄存器的 ARPE 位使能自动重装载的预装载寄存器 (在向上计数或中心对称模式中)。

因为仅当发生一个更新事件的时候,预装载寄存器才能被传送到影子寄存器,因此在计数器开始计数之前,必须通过设置 TIMx_EGR 寄存器中的 UG 位来初始化所有的寄存器。

OCx 的极性可以通过软件在 TIMx_CCER 寄存器中的 CCxP 位设置,它可以设置为高电平有效活或低电平有效。TIMx_CCER 寄存器中的 CCxE 位控制 OCx 输出使能。详见 TIMx CCERx 寄存器的描述。

在 PWM 模式 (模式 1 或模式 2) 下, TIMx_CNT 和 TIM1_CCRx 始终在进行比较, (依据计数器的计数方向) 以确定是否符合 TIM1_CCRx ≤ TIM1_CNT 或者 TIM1_CNT ≤ TIM1_CCRx。 然而为了与 OCREF_CLR 的功能 (在下一个 PWM 周期之前, ETR 信号上的一个外部事件能够清除 OCxREF) 一致,OCxREF 信号只能在下述条件下产生:

- 当比较的结果改变
- 当输出比较模式 (TIMx_CCMRx 寄存器中的 OCxM 位) 从 '冻结'(无比较, OCxM = '000') 切换到某个 PWM 模式 (OCxM = '110'或 '111')

这样在运行中可以通过软件强置 PWM 输出。根据 TIMx_CR1 寄存器中 CMS 位的状态,定时器能够产生边沿对齐的 PWM 信号或中央对齐的 PWM 信号。

PWM 边沿对齐模式

向上计数配置

当 TIMx_CR1 寄存器中的 DIR 位为低的时候执行向上计数。

下面是一个 PWM 模式 1 的例子。当 TIMx_CNT < TIMx_CCRx 时 PWM 信号参考 OCxREF 为高,否则为低。如果 TIMx_CCRx 中的比较值大于自动重装载值 (TIMx_ARR),则 OCxREF 保持为 '1'。如果比较值为 0,则 OCxREF 保持为 '0'。下图为 TIMx_ARR = 8 时边沿对齐的 PWM 波形实例。

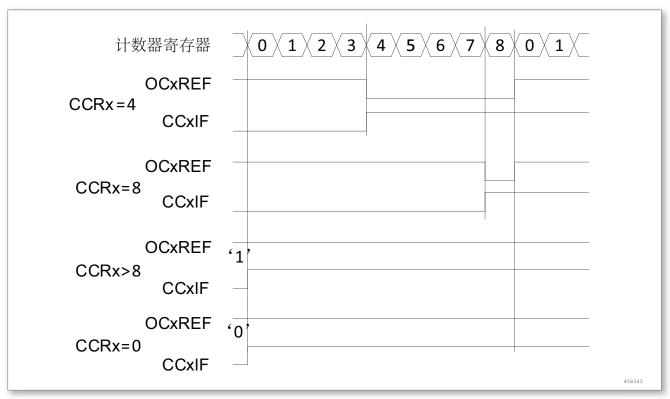


图 156. 边沿对齐的 PWM 波形 (ARR = 8)

向下计数的配置

当 TIMx CR1 寄存器的 DIR 位为高时执行向下计数。

在 PWM 模式 1,当 TIMx_CNT > TIMx_CCRx 时参考信号 OCxREF 为低,否则为高。如果 TIMx_CCRx 中的比较值大于 TIMx_ARR 中的自动重装载值,则 OCxREF 保持为'1'。该模式下不能产生 0 % 的 PWM 波形。

PWM 中央对齐模式

当 TIMx_CR1 寄存器中的 CMS 位不为'00'时为中央对齐模式 (所有其他的配置对 OCxREF /OCx 信号都有相同的作用)。根据不同的 CMS 位的设置,比较标志可以在计数器向上计数时被置 1、在计数器向下计数时被置 1、或在计数器向上和向下计数时被置 1。TIMx_CR1 寄存器中的计数方向位 (DIR) 由硬件更新,不要用软件修改它。参看中央对齐模式章节。

下图给出了一些中央对齐的 PWM 波形的例子

- TIMx ARR = 8
- PWM 模式 1
- TIMx_CR1 寄存器中的 CMS = 01,在中央对齐模式 1 时,当计数器向下计数时设置比较标志

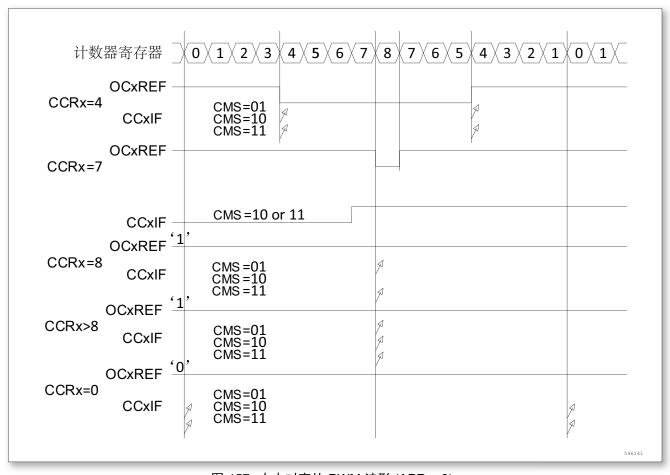


图 157. 中央对齐的 PWM 波形 (APR = 8)

使用中央对齐模式的提示:

- 进入中央对齐模式时,使用当前的上/下计数配置;这就意味着计数器向上还是向下计数取决于 TIMx_CR1 寄存器中 DIR 位的当前值。此外,软件不能同时修改 DIR 和 CMS 位。
- 不推荐当运行在中央对齐模式时改写计数器,因为会产生不可预知的结果。特别地:
 - 如果写入计数器的值大于自动重加载的值 (TIMx_CNT > TIMx_ARR),则方向不会被更新。例如,如果计数器正在向上计数,它就会继续向上计数。
 - 如果将 0 或者 TIMx_ARR 的值写入计数器,方向被更新,但不产生更新事件 UEV
- 使用中央对齐模式最保险的方法,就是在启动计数器之前产生一个软件更新(设置 TIMx_EGR 位中的 UG 位),不要在计数进行过程中修改计数器的值。

17.3.10 单脉冲模式

单脉冲模式 (OPM) 是前述众多模式的一个特例。这种模式允许计数器响应一个激励,并在一个程序可控的延时之后产生一个脉宽可程序控制的脉冲。

可以通过从模式控制器启动计数器,在输出比较模式或者 PWM 模式下产生波形。设置 TIMx_CR1 寄存器中的 OPM 位将选择单脉冲模式,这样可以让计数器自动地在产生下一个更新事件 UEV 时停止。

仅当比较值与计数器的初始值不同时,才能产生一个脉冲。启动之前(当定时器正在等待触

发), 必须如下配置:

- 向上计数方式: CNT < CCRx ≤ ARR(特别地, 0 < CCRx)
- 向下计数方式: CNT > CCRx

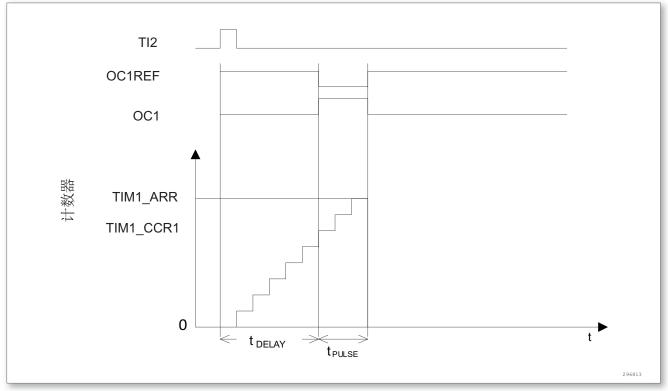


图 158. 单脉冲模式的例子

例如,你需要在从 TI2 输入脚上检测到一个上升沿开始,延迟 t_{DELAY} 之后,在 OC1 上产生一个长度为 t_{PULSE} 的正脉冲。

假定 TI2FP2 作为触发 1:

- 置 TIMx_CCMR1 寄存器中的 CC2S = 01,把 TI2FP2 映像到 TI2
- 置 TIMx CCER 寄存器中的 CC2P = 0, 使 TI2FP2 能够检测上升沿
- 置 TIMx SMCR 寄存器中的 TS = 110, TI2FP2 作为从模式控制器的触发 (TRGI)
- 置 TIMx_SMCR 寄存器中的 SMS = 110(触发模式), TI2FP2 被用来启动计数器

OPM 波形由写入比较寄存器的数值决定 (要考虑时钟频率和计数器预分频器)。

- t_{DELAY} 由写入 TIMx_CCR1 寄存器中的值定义。
- t_{PULSE} 由自动装载值和比较值之间的差值定义 (TIMx_ARR TIMx_CCR1)。
- 假定当发生比较匹配时要产生从 0 到 1 的波形,当计数器到达预装载值是要产生一个从 1 到 0 的波形;首先要置 TIMx_CCMR1 寄存器的 OC1M = 111,进入 PWM 模式 2;根 据需要有选择地使能预装载寄存器:置 TIMx_CCMR1 中的 OC1PE = 1 和 TIMx_CR1 寄存器中的 ARPE;然后在 TIMx_CCR1 寄存器中填写比较值,在 TIMx_ARR 寄存器中填写自动装载值,修改 UG 位来产生一个更新事件,然后等待在 TI2 上的一个外部触发事件。本例中, CC1P = 0。

在这个例子中, TIMx CR1 寄存器中的 DIR 和 CMS 位应该置低。

因为只需一个脉冲,所以必须设置 TIMx_CR1 寄存器中的 OPM = 1,在下一个更新事件 (当计数器从自动装载值翻转到 0) 时停止计数。

特殊情况: OCx 快速使能:

在单脉冲模式下,在 TIx 输入脚的边沿检测逻辑设置 CEN 位以启动计数器。然后计数器和比较值间的比较操作产生了输出的转换。但是这些操作需要一定的时钟周期,因此它限制了可得到的最小延时 t_{DELAY}。

如果要以最小延时输出波形,可以设置 TIMx_CCMRx 寄存器中的 OCxFE 位;此时强制 OCxREF(和 OCx)被强制响应激励而不再依赖比较的结果,输出的波形与比较匹配时的波形一样。OCxFE 只在通道配置为 PWM1 和 PWM2 模式时起作用。

17.3.11 在外部事件时清除 OCxREF 信号

对于一个给定的通道,在 ETRF 输入端设置 TIMx_CCMRx 寄存器中对应的 OCxCE 位为'1')的高电平能够把 OCxREF 信号拉低,OCxREF 信号将保持为低直到发生下一次的更新事件 UEV。

该功能只能用于输出比较和 PWM 模式, 而不能用于强置模式。

例如,OCxREF 信号可以连到一个外部输入。这时,ETR 必须配置如下:

- 外部触发预分频器必须处于关闭: TIMx SMCR 寄存器中的 ETPS[1: 0] = 00
- 必须禁止外部时钟模式 2: TIMx_SMCR 寄存器中的 ECE = 0
- 外部触发极性 (ETP) 和外部触发滤波器 (ETF) 可以根据需要配置

下图显示了当 ETRF 输入变为高时,对应不同 OCxCE 的值,OCxREF 信号的动作。在这个例子中,定时器 TIMx 被置于 PWM 模式。

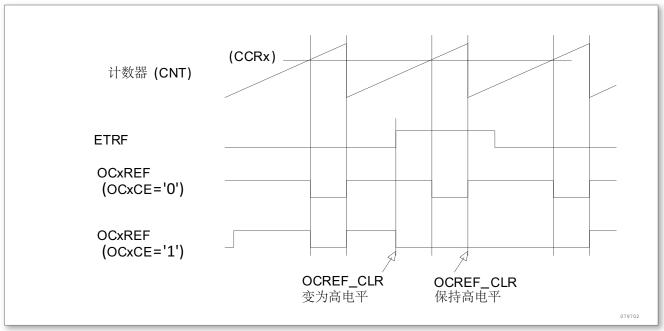


图 159. 清除 TIMx 的 OCxREF

17.3.12 编码器接口模式

选择编码器接口模式的方法是:如果计数器只在 TI2 的边沿计数,则置 TIMx_SMCR 寄存器中的 SMS = 001;如果只在 TI1 边沿计数,则置 SMS = 010;如果计数器同时在 TI1 和 TI2 边沿计数,则置 SMS = 011。

通过设置 TIMx CCER 寄存器中的 CC1P 和 CC2P 位,可以选择 TI1 和 TI2 极性;如果需

要,还可以对输入滤波器编程。

两个输入 TI1 和 TI2 被用来作为增量编码器的接口。下表,假定计数器已经启动 (TIMx_CR1 寄存器中的 CEN = 1),则计数器由每次在 TI1FP1 或 TI2FP2 上的有效跳变驱动。TI1FP1 和 TI2FP2 是 TI1 和 TI2 在通过输入滤波器和极性控制后的信号;如果没有滤波和变相,则 TI1FP1 = TI1;如果没有滤波和变相,则 TI2FP2 = TI2。根据两个输入信号的跳变顺序,产生了计数脉冲和方向信号。依据两个输入信号的跳变顺序,计数器向上或向下计数,同时硬件对 TIMx_CR1 寄存器的 DIR 位进行相应的设置。不管计数器是依靠 TI1 计数、依靠 TI2 计数或者同时依靠 TI1 和 TI2 计数。在任一输入端 (TI1 或者 TI2)的跳变都会重新计算 DIR 位。

编码器接口模式基本上相当于使用了一个带有方向选择的外部时钟。这意味着计数器只在 0 到 TIMx_ARR 寄存器的自动装载值之间连续计数 (根据方向,或是 0 到 ARR 计数,或是 ARR 到 0 计数)。所以在开始计数之前必须配置 TIMx_ARR;同样,捕获器、比较器、预分频器、触发输出特性等仍工作如常。

在这个模式下,计数器依照增量编码器的速度和方向被自动的修改,因此计数器的内容始终指示着编码器的位置。计数方向与相连的传感器旋转的方向对应。下表列出了所有可能的组合,假设 TI1 和 TI2 不同时变换。

	相对信号的电平	TI1FP1 信号		TI1FP2 信号	
有效边沿	(TI1FP1 对应 TI2, TI2FP2 对应 TI1)	上升	下降	上升	下降
仅在 TI1 计数	高	向下计数	向上计数	不计数	不计数
	低	向上计数	向下计数	不计数	不计数
仅在 TI2 计数	高	不计数	不计数	向上计数	向下计数
	低	不计数	不计数	向下计数	向上计数
在 TI1 和 TI2 上	高	向下计数	向上计数	向上计数	向下计数
计数	低	向上计数	向下计数	向下计数	向上计数

表 48 计数方向与编码器信号的关系

一个外部的增量编码器可以直接与 MCU 连接而不需要外部接口逻辑。但是,一般使用比较器将编码器的差动输出转换到数字信号,这大大增加了抗噪声干扰能力。编码器输出的第三个信号表示机械零点,可以把它连接到一个外部中断输入并触发一个计数器复位。

下图是一个计数器操作的实例,显示了计数信号的产生和方向控制。它还显示了当选择了双边沿时,输入抖动是如何被抑制的;抖动可能会在传感器的位置靠近一个转换点时产生。在这个例子中,我们假定配置如下:

- C1S = '01' (TIMx_CCMR1 寄存器, IC1FP1 映射到 TI1)
- CC2S = '01' (TIMx CCMR2 寄存器, IC2FP2 映射到 TI2)
- CC1P = '0' (TIMx CCER 寄存器, IC1FP1 不反相, IC1FP1 = TI1)
- CC2P = '0' (TIMx_CCER 寄存器, IC2FP2 不反相, IC2FP2 = TI2)
- SMS = '011' (TIMx SMCR 寄存器,所有的输入均在上升沿和下降沿有效)
- CEN = '1' (TIMx_CR1 寄存器, 计数器使能)

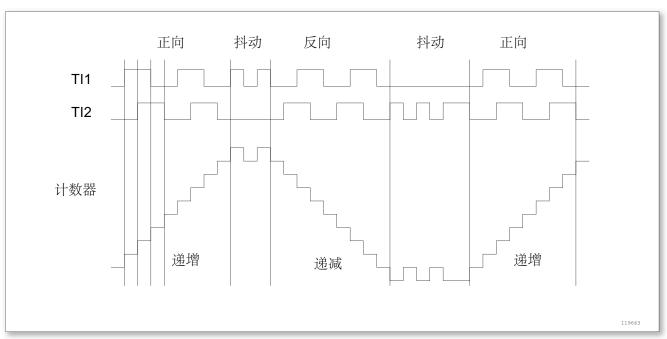
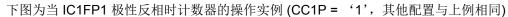



图 160. 编码器模式下的计数器操作实例

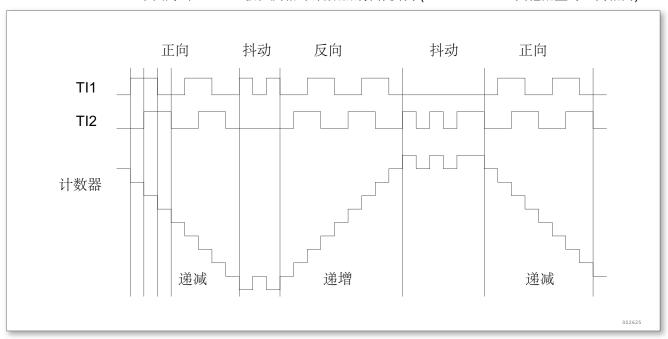


图 161. IC1FP1 反相的编码器接口模式实例

当定时器配置成编码器接口模式时,提供传感器当前位置的信息。使用第二个配置在捕获模式定时器测量两个编码器事件的间隔,可以获得动态的信息 (速度,加速度,减速度)。指示机械零点的编码器输出可被用做此目的。根据两个事件间的间隔,可以按照固定的时间读出计数器。如果可能的话,你可以把计数器的值锁存到第三个输入捕获寄存器 (捕获信号必须是周期的并且可以由另一个定时器产生)。它也可以通过一个由实时时钟产生的 DMA请求来读取它的值。

17.3.13 定时器输入异或功能

TIMx_CR2 寄存器中的 TI1S 位,允许通道 1 的输入滤波器连接到一个异或门的输出端,异或门的 3 个输入端为 TIMx_CH1、TIMx_CH2 和 TIMx_CH3。

异或输出能够被用于所有定时器的输入功能,如触发或输入捕获。小节 15.3.18给出了此特性用于连接霍尔传感器的例子。

17.3.14 定时器和外部触发的同步

TIMx 定时器能够在多种模式下和一个外部的触发同步: 复位模式、门控模式和触发模式。

从模式:复位模式

在发生一个触发输入事件时,计数器和它的预分频器能够重新被初始化;同时,如果 TIMx_CR1 寄存器的 URS 位为低,还产生一个更新事件 UEV;然后所有的预装载寄存器 (TIMx_ARR, TIMx_CCRx) 都被更新了。

- 在以下的例子中, TI1 输入端的上升沿导致向上计数器被清零
- 配置通道 1 以检测 TI1 的上升沿。配置输入滤波器的带宽 (在本例中,不需要任何滤波器,因此保持 IC1F = 0000)。触发操作中不使用捕获预分频器,所以不需要配置。CC1S 位只选择输入捕获源,即 TIMx_CCMR1 寄存器中 CC1S = 01。置 TIMx_CCER 寄存器中 CC1P = 0 以确定极性 (只检测上升沿)
- 置 TIMx_SMCR 寄存器中 SMS = 100, 配置定时器为复位模式; 置 TIMx_SMCR 寄存器中 TS = 101, 选择 TI1 作为输入源
- 置 TIMx CR1 寄存器中 CEN = 1, 启动计数器

计数器开始依据内部时钟计数,然后正常运转直到 TI1 出现一个上升沿;此时,计数器被清零然后从 0 重新开始计数。同时,触发标志 (TIMx_SR 寄存器中的 TIF 位) 被设置,根据 TIMx_DIER 寄存器中 TIE(中断使能) 位和 TDE(DMA 使能) 位的设置,产生一个中断请求或一个 DMA 请求。

下图显示当自动重装载寄存器 TIMx_ARR = 0x36 时的动作。在 TI1 上升沿和计数器的实际复位之间的延时取决于 TI1 输入端的重同步电路。

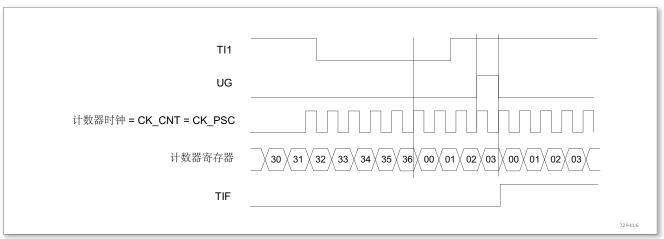


图 162. 复位模式下的控制电路

从模式: 门控模式

计数器的使能依赖于选中的输入端的电平。

在如下的例子中, 计数器只在 TI1 为低时向上计数:

- 配置通道 1 以检测 TI1 上的低电平。配置输入滤波器带宽 (本例中,不需要滤波,所以保持 IC1F = 0000)。触发操作中不使用捕获预分频器,所以不需要配置。CC1S 位用于选择输入捕获源,置 TIMx_CCMR1 寄存器中 CC1S = 01。置 TIMx_CCER 寄存器中 CC1P = 1 以确定极性 (只检测低电平)。
- 置 TIMx_SMCR 寄存器中 SMS = 101, 配置定时器为门控模式; 置 TIMx_SMCR 寄存器中 TS = 101, 选择 TI1 作为输入源。
- 置 TIMx_CR1 寄存器中 CEN = 1, 启动计数器。在门控模式下, 如果 CEN = 0,则计数器不能启动,不论触发输入电平如何。

只要 TI1 为低,计数器开始依据内部时钟计数,在 TI1 变高时停止计数。当计数器开始或停止时都设置 TIMx_SR 中的 TIF 标置。

TI1 上升沿和计数器实际停止之间的延时取决于 TI1 输入端的重同步电路。

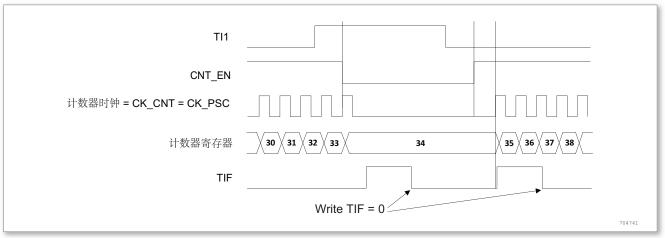


图 163. 门控模式下的控制电路

从模式: 触发模式

计数器的使能依赖于选中的输入端上的事件。

在下面的例子中, 计数器在 TI2 输入的上升沿开始向上计数:

- 配置通道 2 检测 TI2 的上升沿。配置输入滤波器带宽 (本例中,不需要任何滤波器,保持 IC2F = 0000)。触发操作中不使用捕获预分频器,不需要配置。CC2S 位只用于选择输入捕获源,置 TIMx_CCMR1 寄存器中 CC2S = 01。置 TIMx_CCER 寄存器中 CC1P = 1 以确定极性 (只检测低电平)。
- 置 TIMx_SMCR 寄存器中 SMS = 110, 配置定时器为触发模式; 置 TIMx_SMCR 寄存器中 TS = 110, 选择 TI2 作为输入源。

当 TI2 出现一个上升沿时,计数器开始在内部时钟驱动下计数,同时设置 TIF 标志。

TI2 上升沿和计数器启动计数之间的延时取决于 TI2 输入端的重同步电路。

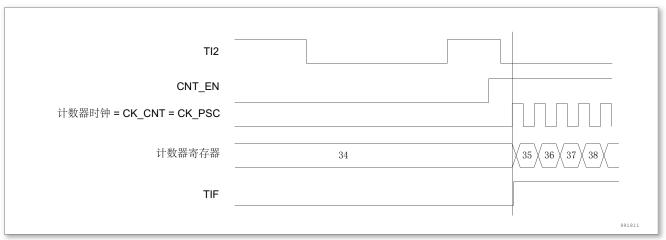


图 164. 触发器模式下的控制电路

从模式:外部时钟模式2+触发模式

外部时钟模式 2 可以与另一种从模式 (外部时钟模式 1 和编码器模式除外) 一起使用。这时,ETR 信号被用作外部时钟的输入,在复位模式、门控模式或触发模式时可以选择另一个输入作为触发输入。不建议使用 TIMx_SMCR 寄存器的 TS 位选择 ETR 作为 TRGI。

在下面的例子中,当 TI1 上出现一个上升沿时,计数器便在 ETR 的每一个上升沿向上计数一次:

- 通过 TIMx_SMCR 寄存器配置外部触发输入电路:
 - ETF = 0000: 没有滤波
 - ETPS = 00: 不用预分频器
 - ETP = 0: 检测 ETR 的上升沿,置 ECE = 1 使能外部时钟模式 2
- 按如下配置通道 1, 检测 TI 的上升沿:
 - IC1F = 0000: 没有滤波
 - 触发操作中不使用捕获预分频器,不需要配置
 - 置 TIMx CCMR1 寄存器中 CC1S = 01,选择输入捕获源
 - 置 TIMx_CCER 寄存器中 CC1P = 0 以确定极性 (只检测上升沿)
- 置 TIMx_SMCR 寄存器中 SMS = 110, 配置定时器为触发模式。置 TIMx_SMCR 寄存器中 TS = 101, 选择 TI1 作为输入源。

当 TI1 上出现一个上升沿时,TIF 标志被设置,计数器开始在 ETR 的上升沿计数。

ETR 信号的上升沿和计数器实际复位间的延时取决于 ETRP 输入端的重同步电路。

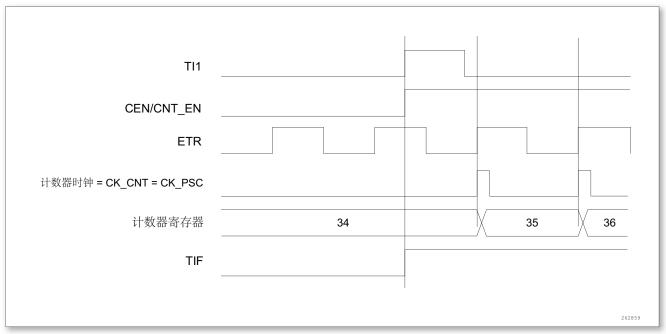


图 165. 外部时钟模式 2 + 触发模式下的控制电路

17.3.15 定时器同步

所有 TIMx 定时器在内部相连,用于定时器同步或链接。当一个定时器处于主模式时,它可以对另一个处于从模式的定时器的计数器进行复位、启动、停止或提供时钟等操作。 下图显示了触发选择和主模式选择模块的概况。

使用一个定时器作为另一个定时器的预分频器

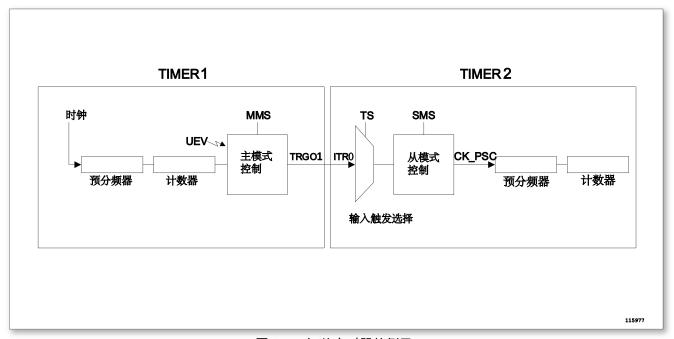


图 166. 主/从定时器的例子

如:可以配置定时器 1 作为定时器 2 的预分频器。参考上图,进行下述操作:

- 配置定时器 1 为主模式,它可以在每一个更新事件 UEV 时输出一个周期性的触发信号。在 TIM1_CR2 寄存器的 MMS = '010' 时,每当产生一个更新事件时在 TRGO1 上输出一个上升沿信号。
- 连接定时器 1 的 TRGO1 输出至定时器 2,设置 TIM2_SMCR 寄存器的 TS = '000', 配置定时器 2 为使用 ITR1 作为内部触发的从模式。
- 然后把从模式控制器置于外部时钟模式 1(TIM2_SMCR 寄存器的 SMS = 111); 这样定时器 2即可由定时器 1 周期性的上升沿 (即定时器 1 的计数器溢出) 信号驱动。
- 最后,必须设置相应 (TIMx_CR1 寄存器) 的 CEN 位分别启动两个定时器。

注:如果 OCx 已被选中为定时器 1 的触发输出 (MMS = 1xx),它的上升沿用于驱动定时器 2 的计数器。

使用一个定时器使能另一个定时器

在这个例子中,定时器 2 的运行受由定时器 1 的输出比较控制。参考图 167。只当定时器 1 的 OC1REF 为高时定时器 2 才对分频后的内部时钟计数。两个定时器的时钟频率都是由预分频器对 CK_INT 除以 $3(f_{CK_INT} = f_{CK_INT}/3)$ 得到。

- 配置定时器 1 为主模式,送出它的输出比较参考信号 (OC1REF) 为触发输出 (TIM1_CR2 寄存器的 MMS = 100)
- 配置定时器 1 的 OC1REF 波形 (TIM1 CCMR1 寄存器)
- 配置定时器 2 从定时器 1 获得输入触发 (TIM2 SMCR 寄存器的 TS = 001)
- 配置定时器 2 为门控模式 (TIM2 SMCR 寄存器的 SMS = 101)
- 置 TIM2 CR1 寄存器的 CEN = 1 以使能定时器 2
- 置 TIM1_CR1 寄存器的 CEN = 1 以使能定时器 1

注:定时器2的时钟不与定时器1的时钟同步,这个模式只影响定时器2计数器的使能信号。

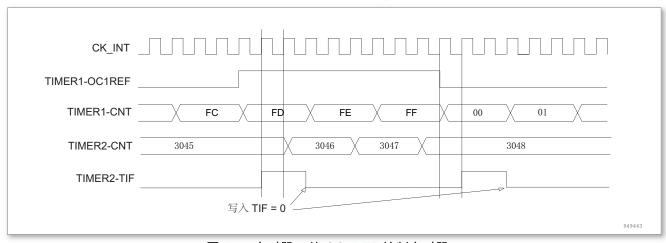


图 167. 定时器 1 的 OC1REF 控制定时器 2

在上图的例子中,在定时器 2 启动之前,它们的计数器和预分频器未被初始化,因此它们从当前的数值开始计数。可以在启动定时器 1 之前复位 2 个定时器,使它们从给定的数值开始,即在定时器计数器中写入需要的任意数值。写 TIMx_EGR 寄存器的 UG 位即可复位定时器。

在下一个例子中,需要同步定时器 1 和定时器 2。定时器 1 是主模式并从 0 开始,定时器 2 是从模式并从 0xE7 开始; 2 个定时器的预分频器系数相同。写 0 到 TIM1_CR1 的 CEN 位将禁止定时器 1,定时器 2 随即停止。

- 配置定时器 1 为主模式,送出输出比较 1 参考信号 (OC1REF) 做为触发输出 (TIM1_CR2 寄存器的 MMS = 100)。
- 配置定时器 1 的 OC1REF 波形 (TIM1_CCMR1 寄存器)。
- 配置定时器 2 从定时器 1 获得输入触发 (TIM2 SMCR 寄存器的 TS = 000)
- 配置定时器 2 为门控模式 (TIM2 SMCR 寄存器的 SMS = 101)
- 置 TIM1 EGR 寄存器的 UG = 1, 复位定时器 1。
- 置 TIM2 EGR 寄存器的 UG = 1, 复位定时器 2。
- 写 0xE7 至定时器 2 的计数器 (TIM2 CNT), 初始化它为 0xE7。
- 置 TIM2 CR1 寄存器的 CEN = 1 以使能定时器 2。
- 置 TIM1 CR1 寄存器的 CEN = 1 以启动定时器 1。
- 置 TIM1_CR1 寄存器的 CEN = 0 以停止定时器 1。

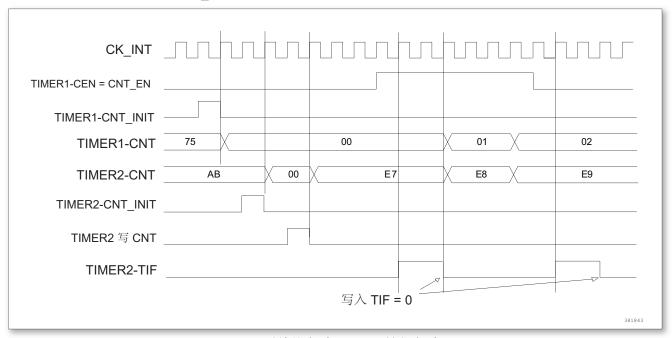


图 168. 通过使能定时器 1 可以控制定时器 2

使用一个定时器去启动另一个定时器

在这个例子中,使用定时器 1 的更新事件使能定时器 2。参考图 169。当定时器 1 产生更新事件时,定时器 2 便从它当前的数值 (可以是非 0) 按照分频的内部时钟开始计数。在收到触发信号时,定时器 2 的 CEN 位被自动地置 1,同时计数器开始计数直到写 0 到 TIM2_CR1 寄存器的 CEN 位。两个定时器的时钟频率都是由预分频器对 CK_INT 除以 $3(f_{CK_CNT} = f_{CK_INT}/3)$ 。

- 配置定时器 1 为主模式,送出它的更新事件 (UEV) 做为触发输出 (TIM1_CR2 寄存器的 MMS = 010)。
- 配置定时器 1 的周期 (TIM1_ARR 寄存器)。
- 配置定时器 2 从定时器 1 获得输入触发 (TIM2 SMCR 寄存器的 TS = 000)
- 配置定时器 2 为触发模式 (TIM2 SMCR 寄存器的 SMS = 110)
- 置 TIM1 CR1 寄存器的 CEN = 1 以启动定时器 1。

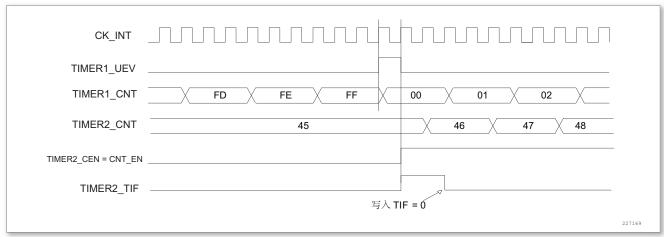


图 169. 使用定时器 1 的更新触发定时器 2

在上一个例子中,可以在启动计数之前初始化两个计数器。下图显示在与 0 相同配置情况下,使用触发模式而不是门控模式 (TIM2 SMCR 寄存器的 SMS = 110) 的动作。

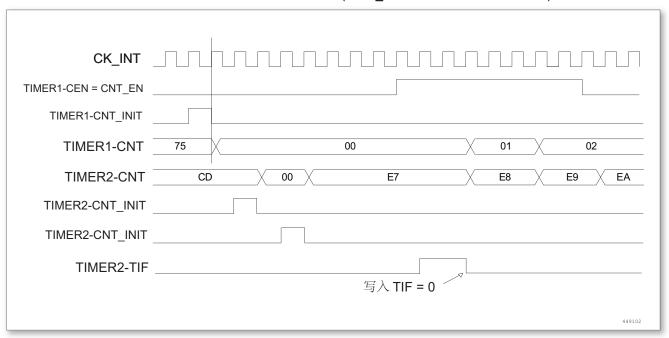


图 170. 利用定时器 1 的使能触发定时器 2

使用一个额定时器作为另一个的预分频器

这个例子使用定时器 1 作为定时器 2 的预分频器。配置如下:

- 配置定时器 1 为主模式,送出它的更新事件 UEV 作为触发输出 (TIM1_CR2 寄存器的 MMS = '010')。然后每次计数器溢出时输出一个周期信号。
- 配置定时器 1 的周期 (TIM1 ARR 寄存器)。
- 配置定时器 2 从定时器 1 获得输入触发 (TIM2 SMCR 寄存器的 TS = 000)
- 配置定时器 2 使用外部时钟模式 (TIM2 SMCR 寄存器的 SMS = 111)
- 置 TIM1_CR2 寄存器的 CEN = 1 以启动定时器 2
- 置 TIM1 CR1 寄存器的 CEN = 1 以启动定时器 1

使用一个外部触发同步地启动 2 个定时器

这个例子中当定时器 1 的 TI1 输入上升时使能定时器 1,使能定时器 1 的使能定时器 2。为保证计数器的对齐,定时器 1 必须配置为主/从模式 (对应 TI1 为从,对应定时器 2 为主):

- 配置定时器 1 为主模式,送出它的使能作为触发输出 (TIM1_CR2 寄存器的 MMS= '001')
- 配置定时器 1 为从模式,从 TI1 获得输入触发 (TIM1 SMCR 寄存器的 TS = '100')
- 配置定时器 1 为触发模式 (TIM1_SMCR 寄存器的 SMS='110')
- 配置定时器 2 从定时器 1 获得输入触发 (TIM2 SMCR 寄存器的 TS = 000)
- 配置定时器 2 为触发模式 (TIM2_SMCR 寄存器的 SMS = 110)

当定时器 1 的 TI1 上出现一个上升沿时,两个定时器同步地按照内部时钟开始计数,两个 TIF 标志也同时被设置。

注:在这个例子中,在启动之前两个定时器都被初始化 (设置相应的 UG 位),两个计数器都从 0 开始,但可以通过写入任意一个计数器寄存器 (TIMx_CNT) 在定时器间插入一个偏移。下图中能看到主/从模式下在定时器 1 的 CNT EN 和 CK PSC 之间有个延迟。

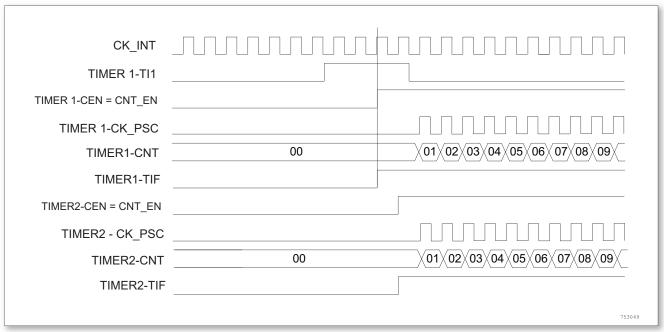


图 171. 使用定时器 1 的 TI1 输入触发定时器 1 和定时器 2

17.3.16 调试模式

当微控制器进入调试模式 (CPU 核心停止),根据 DBG 模块中 DBG_TIMx_STOP 的设置,TIMx 计数器或者继续正常操作,或者停止。详见调试模块章节。

17.4 TIMx 寄存器描述

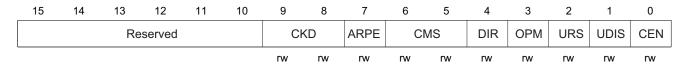

可以用半字 (16位)或字 (32位)的方式操作这些外设寄存器。

表 49. TIMx 寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	TIMx_CR1	控制寄存器 1	0x00000000	小节 17.4.1
0x04	TIMx_CR2	控制寄存器 2	0x00000000	小节 17.4.2
0x08	TIMx_SMCR	从模式控制寄存器	0x00000000	小节 17.4.3
0x0C	TIMx_DIER	DMA/中断使能寄存器	0x00000000	小节 17.4.4
0x10	TIMx_SR	状态寄存器	0x00000000	小节 17.4.5
0x14	TIMx_EGR	事件产生寄存器	0x00000000	小节 17.4.6
0x18	TIMx_CCMR1	捕获/比较模式寄存器 1	0x00000000	小节 17.4.7
0x1C	TIMx_CCMR2	捕获/比较模式寄存器 2	0x00000000	小节 17.4.8
0x20	TIMx_CCER	捕获/比较使能寄存器	0x00000000	小节 17.4.9
0x24	TIMx_CNT	计数器	0x00000000	小节 17.4.10
0x28	TIMx_PSC	预分频器	0x00000000	小节 17.4.11
0x2C	TIMx_ARR	自动装载寄存器	0x00000000	小节 17.4.12
0x34	TIMx_CCR1	捕获/比较寄存器 1	0x00000000	小节 17.4.13
0x38	TIMx_CCR2	捕获/比较寄存器 2	0x00000000	小节 17.4.14
0x3C	TIMx_CCR3	捕获/比较寄存器 3	0x00000000	小节 17.4.15
0x40	TIMx_CCR4	捕获/比较寄存器 4	0x00000000	小节 17.4.16
0x48	TIMx_DCR	DMA 控制寄存器	0x00000000	小节 17.4.17
0x4C	TIMx_DMAR	连续模式的 DMA 地址	0x00000000	小节 17.4.18

17.4.1 控制寄存器 1(TIMx_CR1)

偏移地址: 0x00 复位值: 0x0000

Bit	Field	Type	Reset	Description
15: 10	Reserved			保留, 读为 0
9: 8	CKD	rw	0x00	时钟分频因子 (Clock division)
				这 2 位定义在定时器时钟 (CK_INT) 频率、死区时间和由
				死区发生器与数字滤波器 (ETR, Tlx) 所用的采样时钟之间
				的分频比例。
				00: $t_{DTS} = t_{CK_INT}$
				01: $t_{DTS} = 2 \times t_{CK_INT}$
				10: $t_{DTS} = 4 \times t_{CK_INT}$
				11:保留,不要使用这个配置

Bit	Field	Туре	Reset	Description
7	ARPE	rw	0x00	自动重装载预装载允许位 (Auto-reload preload enable)
				0: TIMx_ARR 寄存器没有缓冲
				1: TIMx_ARR 寄存器被装入缓冲器
6: 5	CMS	rw	0x00	选择中央对齐模式 (Center-aligned mode selection) 00: 边沿对齐模式。计数器依据方向位 (DIR) 向上或向下计数 01: 中央对齐模式 1。计数器交替地向上和向下计数。配置为输出的通道 (TIMx_CCMRx 寄存器中 CCxS = 00) 的输出比较中断标志位,只在计数器向下计数时被设置 10:中央对齐模式 2。计数器交替地向上和向下计数。计数器交替地向上和向下计数。配置为输出的通道 (TIMx_CCMRx 寄存器中 CCxS = 00) 的输出比较中断标志位,只在计数器向上计数时被设置 11:中央对齐模式 3。计数器交替地向上和向下计数。计数器交替地向上和向下计数。配置为输出的通道 (TIMx_CCMRx 寄存器中 CCxS = 00) 的输出比较中断标志位,在计数器 交替地向上和向下计数时均被设置 注:在计数器开启时 (CEN = 1),不允许从边沿对齐模式转换到中央对齐模式。
4	DIR	rw	0x00	方向 (Direction) 0: 计数器向上计数 1: 计数器向下计数 注: 当计数器配置为中央对齐模式或编码器模式时,该位为只读。
3	ОРМ	rw	0x00	单脉冲模式 (One pulse mode) 0: 在发生更新事件时,计数器不停止 1: 在发生下一次更新事件 (清除 CEN 位) 时,计数器停止
2	URS	rw	0x00	更新请求源 (Update request source) 软件通过该位选择 UEV 事件的源。 0: 如果允许产生更新中断或 DMA 请求,则下述任一事件 产生一个更新中断或 DMA 请求: - 计数器溢出/下溢 - 设置 UG 位 - 从模式控制器产生的更新 1: 如果允许产生更新中断或 DMA 请求,则只有计数器溢出/下溢才产生一个更新中断或 DMA 请求

Bit	Field	Туре	Reset	Description
1	UDIS	rw	0x00	禁止更新 (Update disable) 软件通过该位允许/禁止 UEV
				事件的产生
				0: 允许 UEV。更新 (UEV) 事件由下述任一事件产生:
				- 计数器溢出/下溢
				- 设置 UG 位
				- 从模式控制器产生的更新被缓存的寄存器被装入它们的
				预装载值。
				1:禁止 UEV。不产生更新事件,影子寄存器 (ARR、PSC、
				CCRx) 保持它们的值。如果设置了 UG 位或从模式控制器
				发出了一个硬件复位,则计数器和预分频器被重新初始化
0	CEN	rw	0x00	允许计数器 (Counter enable)
				0: 禁止计数器
				1: 使能计数器。
				注:在软件设置了 CEN 位后,外部时钟、门控模式和编码器模
				式才能工作。触发模式可以自动地通过硬件设置 CEN 位。

17.4.2 控制寄存器 2(TIMx_CR2)

偏移地址: 0x04 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	rved				TI1S		MMS		CCDS		Reserve	d
								rw	rw	rw	rw	rw			

Bit	Field	Туре	Reset	Description
15: 8	Reserved			保留, 读为 0
7	TI1S	rw	0x00	TI1 选择 (TI1 selection)
				0: TIMx_CH1 管脚连到 TI1 输入
				1: TIMx_CH1、TIMx_CH2 和 TIMx_CH3 管脚经异或后连
				到 TI1 输入

Bit	Field	Туре	Reset	Description
Bit 6: 4	Field MMS	Type rw	Reset 0x00	主模式选择 (Master mode selection) 这两位用于选择在主模式下送到从定时器的同步信息 (TRGO)。可能的组合如下: 000: 复位-TIMx_EGR 寄存器的 UG 位被用于作为触发输出 (TRGO)。如果触发输入 (从模式控制器处于复位模式)产生复位,则 TRGO 上的信号相对实际的复位会有一个延迟。 001: 使能-计数器使能信号 CNT_EN 被用于作为触发输出 (TRGO)。有时需要在同一时间启动多个定时器或控制在一段时间内使能从定时器。计数器使能信号是通过 CEN 控制位和门控模式下的触发输入信号的逻辑或产生。当计数器使能信号受控于触发输入时,TRGO 上会有一个延迟,除非选择了主/从模式 (见 TIMx_SMCR 寄存器中 MSM 位的描述)。 010: 更新-更新事件被选为触发输入 (TRGO)。例如,一个主定时器的时钟可以被用作一个从定时器的预分频器。
				011: 比较脉冲-发生一次捕获或一次比较成功时,当要设置 CC1IF 标志时 (即使它已经为高),触发输出送出一个正脉冲 (TRGO)。
				100: 比较-OC1REF 信号被用于作为触发输出 (TRGO) 101: 比较-OC2REF 信号被用于作为触发输出 (TRGO) 110: 比较-OC3REF 信号被用于作为触发输出 (TRGO) 111: 比较-OC4REF 信号被用于作为触发输出 (TRGO)
3	CCDS	rw	0x00	捕获/比较的 DMA 选择 (Capture/compare DMA selection) 0: 当发生 CCx 事件时,送出 CCx 的 DMA 请求 1: 当发生更新事件时,送出 CCx 的 DMA 请求
2: 0	Reserved			保留,读为0

17.4.3 从模式控制寄存器 (TIMx_SMCR)

偏移地址: 0x08 复位值: 0x0000

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ETP	ECE	ETI	PS		ETI			MSM		TS		occs		SMS	
_	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
15	ETP	rw	0x00	外部触发极性 (External trigger polarity)
				该位选择是用 ETR 还是 ETR 的反相来作为触发操作。
				0: ETR 不反相,高电平或上升沿有效
				1: ETR 被反相,低电平或下降沿有效

Bit	Field	Туре	Reset	Description
14	ECE	rw	0x00	外部时钟使能位 (External clock enable) 该位启用外部时钟模式 2。 0: 禁止外部时钟模式 2 1: 使能外部时钟模式 2,计器由 ETRF 信号上的任意有效 上升沿驱动 注 1: 设置 ECE 位与选择外部时钟模式 1 并将 TRGI 连到 ETRF(SMS = 111 和 TS = 111) 具有相同功效。 注 2: 下述从模式可以与外部时钟模式 2 同时使用: 复位模式, 门控模式和触发模式; 但是, 这时 TRGI 不能连到 ETRF(TS 位不能是 111)。 注 3: 外部时钟模式 1 和外部时钟模式 2 同时被使能时, 外部时钟的输入是 ETRF。
13: 12	ETPS	rw	0x00	外部触发预分频 (External trigger prescaler) 外部触发信号 ETRP 的频率必须最多是 TIMxCLK 频率的 1/4。当输入较快的外部时钟时,可以使用预分频降低 ETRP 的频率。 00: 关闭预分频 01: ETRP 频率除以 2 10: ETRP 频率除以 4 11: ETRP 频率除以 8
11: 8	ETF	rw	0x00	外部触发滤波 (External trigger filter) 这些位定义了对 ETRP 信号采样的频率和对 ETRP 数字滤波的带宽。实际上,数字滤波器是一个事件计数器,它记录到 N 个事件后会产生一个输出的跳变。 0000: 无滤波器,以 fds 采样 0001: 采样频率 fsampling=fck_int,N = 2 0010: 采样频率 fsampling=fck_int,N = 4 0011: 采样频率 fsampling=fdts/2, N = 8 0100: 采样频率 fsampling=fdts/2, N = 8 0101: 采样频率 fsampling=fdts/4, N = 6 0111: 采样频率 fsampling=fdts/4, N = 8 1000: 采样频率 fsampling=fdts/4, N = 8 1000: 采样频率 fsampling=fdts/8, N = 8 1001: 采样频率 fsampling=fdts/8, N = 8 1010: 采样频率 fsampling=fdts/16, N = 5 1011: 采样频率 fsampling=fdts/16, N = 6 1100: 采样频率 fsampling=fdts/16, N = 8 1101: 采样频率 fsampling=fdts/16, N = 8 1101: 采样频率 fsampling=fdts/16, N = 8 1101: 采样频率 fsampling=fdts/32, N = 5 1110: 采样频率 fsampling=fdts/32, N = 6 1111: 采样频率 fsampling=fdts/32, N = 6

Bit	Field	Туре	Reset	Description
7	MSM	rw	0x00	主/从模式 (Master/slave mode) 0: 无作用 1: 触发输入 (TRGI) 上的事件被延迟了,以允许在当前定时器 (通过 TRGO) 与它的从定时器间的完美同步,这对要求把几个定时器同步到一个单一的外部事件时是非常有用的
6: 4	TS	ľW	0x00	触发选择 (Trigger selection) 这 3 位选择用于同步计数器的触发输入。 000: 内部触发 0(ITR0) 001: 内部触发 1(ITR1) 010: 内部触发 2(ITR2) 011: 内部触发 3(ITR3) 100: TI1 的边沿检测器 (TI1F_ED) 101: 滤波后的定时器输入 1(TI1FP1) 110: 滤波后的定时器输入 2(TI2FP2) 111: 外部触发输入 (ETRF) 更多有关 ITRx 的细节,参见下表。 注: 这些位只能在未用到 (如 SMS = 000) 时被改变,以避免在改变时产生错误的边沿检测。
3	occs	rw	0x00	比较器输出信号清除选择 (output conpare clear selection) 在 PWM 模式下,清除比较器输出 1: 比较器输出作为清除信号 0: 外部触发信号作为清除信号

Bit	Field	Туре	Reset	Description
2: 0	SMS	rw	0x00	从模式选择 (Slave mode selection)
				当选择了外部信号,触发信号 (TRGI) 的有效边沿与选中的
				外部输入极性相关 (见输入控制寄存器和控制寄存器的说
				明)
				000: 关闭从模式 - 如果 CEN = 1,则预分频器直接由内部
				时钟驱动。
				001: 编码器模式 1 - 根据 TI1FP1 的电平, 计数器在 TI2FP2
				的边沿向上/下计数。
				010: 编码器模式 2 - 根据 TI2FP2 的电平, 计数器在 TI1FP1
				的边沿向上/下计数。
				011: 编码器模式 3 - 根据另一个输入的电平, 计数器在
				TI1FP1 和 TI2FP2 的边沿向上/下计数。
				100: 复位模式 - 选中的触发输入 (TRGI) 的上升沿重新初
				始化计数器,并且产生一个更新寄存器的信号。
				101: 门控模式 - 当触发输入 (TRGI) 为高时,计数器的时
				钟开启。当触发输入变为低时,计数器停止(但不复位)。计
				数器的启动和停止都是受控的。
				110: 触发模式 - 计数器在触发输入 TRGI 的上升沿启动 (但
				不复位), 只有计数器的启动是受控的。
				111: 外部时钟模式 1 - 选中的触发输入 (TRGI) 的上升沿
				驱动计数器。
				注:如果 TI1F_EN 被选为触发输入 (TS = 100) 时,不要使用门
				控模式。这是因为, TI1F_ED 在每次 TI1F 变化时输出一个脉冲,
				然而门控模式是要检查触发输入的电平。

表 50. TIMx 内部触发连接

从定时都	\$	ITR0(TS = 000)	ITR1(TS = 001)	ITR2(TS = 010)	ITR3(TS = 011)	
TIM	2	TIM1	TIM8	TIM3	无	

17.4.4 DMA/中断使能寄存器 (TIMx_DIER)

偏移地址: 0x0C 复位值: 0x0000

•	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	es.	TDE	Res.	CC4DE	CC3DE	CC2DE	CC1DE	UDE	Res.	TIE	Res.	CC4IE	CC3IE	CC2IE	CC1IE	UIE
		rw		rw	rw	rw	rw	rw		rw		rw	rw	rw	rw	rw

Bit	Field	Type	Reset	Description
15	Reserved			保留,读为0

Bit	Field	Туре	Reset	Description
14	TDE	rw	0x00	允许触发 DMA 请求 (Trigger DMA request enable)
				0: 禁止触发 DMA 请求
				1: 允许触发 DMA 请求
13	Reserved			保留, 读为 0
12	CC4DE	rw	0x00	允许捕获/比较 4 的 DMA 请求 (Capture/Compare 4 DMA
				request enable)
				0: 禁止捕获/比较 4 的 DMA 请求
				1: 允许捕获/比较 4 的 DMA 请求
11	CC3DE	rw	0x00	允许捕获/比较 3 的 DMA 请求 (Capture/Compare 3 DMA
				request enable)
				0: 禁止捕获/比较 3 的 DMA 请求
				1: 允许捕获/比较 3 的 DMA 请求
10	CC2DE	rw	0x00	允许捕获/比较 2 的 DMA 请求 (Capture/Compare 2 DMA
				request enable)
				0: 禁止捕获/比较 2 的 DMA 请求
•	00455		0.00	1: 允许捕获/比较 2 的 DMA 请求
9	CC1DE	rw	0x00	允许捕获/比较 1 的 DMA 请求 (Capture/Compare 1 DMA
				request enable)
				0: 禁止捕获/比较 1 的 DMA 请求
0	LIDE		000	1: 允许捕获/比较 1 的 DMA 请求
8	UDE	rw	0x00	允许更新的 DMA 请求 (Update DMA request enable) 0: 禁止更新的 DMA 请求
				1: 允许更新的 DMA 请求
7	Reserved			保留, 读为 0
6	TIE	rw	0x00	触发中断使能 (Trigger interrupt enable)
U	116	I VV	0,000	0: 禁止触发中断
				1: 使能触发中断
5	Reserved			保留, 读为 0
4	CC4IE	rw	0x00	允许捕获/比较 4 中断 (Capture/Compare 4 interrupt en-
				able)
				0: 禁止捕获/比较 4 中断
				1: 允许捕获/比较 4 中断
3	CC3IE	rw	0x00	允许捕获/比较 3 中断 (Capture/Compare 3 interrupt en-
				able)
				0: 禁止捕获/比较 3 中断
				1: 允许捕获/比较 3 中断
2	CC2IE	rw	0x00	允许捕获/比较 2 中断 (Capture/Compare 2 interrupt en-
				able)
				0: 禁止捕获/比较 2 中断
				1: 允许捕获/比较 2 中断

Bit	Field	Туре	Reset	Description
1	CC1IE	rw	0x00	允许捕获/比较 1 中断 (Capture/Compare 1 interrupt en-
				able)
				0: 禁止捕获/比较 1 中断
				1: 允许捕获/比较 1 中断
0	UIE	rw	0x00	允许更新中断 (Update interrupt enable)
				0: 禁止更新中断
				1: 允许更新中断

17.4.5 状态寄存器 (TIMx_SR)

偏移地址: 0x10 复位值: 0x0000

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Res.		CC4OF	CC3OF	CC2OF	CC1OF	Res.		TIF	Res.	CC4IF	CC3IF	CC2IF	CC1IF	UIF
Ī				rc w0	rc w0	rc w0	rc w0			rc w0		rc w0				

D:4	Field	Tuno	Reset	Description
Bit		Туре	Reset	<u> </u>
15: 13	Reserved			保留, 读为 0
12	CC4OF	rc_w0	0x00	捕获/比较 4 重复捕获标记 (Capture/Compare 4 overcap-
				ture flag)
				参见 CC1OF 描述。
11	CC3OF	rc_w0	0x00	捕获/比较 3 重复捕获标记 (Capture/Compare 3 overcap-
				ture flag)
				参见 CC1OF 描述。
10	CC2OF	rc_w0	0x00	捕获/比较 2 重复捕获标记 (Capture/Compare 2 overcap-
				ture flag)
				参见 CC1OF 描述。
9	CC1OF	rc_w0	0x00	捕获/比较 1 重复捕获标记 (Capture/Compare 1 overcap-
				ture flag)
				仅当相应的通道被配置为输入捕获时,该标记可由硬件置
				1。写 0 可清除该位。
				0: 无重复捕获产生;
				1: 计数器的值被捕获到 TIMx_CCR1 寄存器时, CC1IF 的
				状态已经为 1。
8: 7	Reserved			保留,读为0
6	TIF	rc_w0	0x00	触发器中断标记 (Trigger interrupt flag)
				当发生触发事件 (当从模式控制器处于除门控模式外的其
				它模式时,在 TRGI 输入端检测到有效边沿,或或门控模
				式下的任一边沿)时由硬件对该位置 1。它由软件清 0。
				0: 无触发器事件产生
				1: 触发器中断等待响应
5	Reserved			保留, 读为 0

Bit	Field	Туре	Reset	Description
4	CC4IF	rc_w0	0x00	捕获/比较 4 中断标记 (Capture/Compare 4 interrupt flag) 参考 CC1IF 描述。
3	CC3IF	rc_w0	0x00	捕获/比较 3 中断标记 (Capture/Compare 3 interrupt flag) 参考 CC1IF 描述。
2	CC2IF	rc_w0	0x00	捕获/比较 2 中断标记 (Capture/Compare 2 interrupt flag) 参考 CC1IF 描述。
1	CC1IF	rc_w0	0x00	捕获/比较 1 中断标记 (Capture/Compare 1 interrupt flag) 如果通道 CC1 配置为输出模式: 当计数器值与比较值匹配时该位由硬件置'1',但在中心对称模式下除外(参考 TIMx_CR1 寄存器的 CMS 位)。它由软件清'0'。 0: 无匹配发生 1: TIMx_CNT 的值与 TIMx_CCR1 的值匹配如果通道 CC1 配置为输入模式: 当捕获事件发生时该位由硬件置'1',它由软件清 0 或通过读 TIMx_CCR1 清'0'。 0: 无输入捕获产生 1: 计数器值已被捕获(拷贝)至 TIMx_CCR1(在 IC1 上检测到与所选极性相同的边沿)
0	UIF	rc_w0	0x00	更新中断标记 (Update interrupt flag) 当产生更新事件时该位由硬件置'1'。它由软件清'0'。 0: 无更新事件产生 1:更新事件等待响应。当寄存器被更新时该位由硬件置'1': - 若 TIMx_CR1 寄存器的 UDIS = 0, 当 REP_CNT = 0 时产生更新事件 (重复向下计数器上溢或下溢时) - 若 TIMx_CR1 寄存器的 UDIS = 0、URS = 0, 当 TIMx_EGR 寄存器的 UG = 1 时产生更新事件 (软件对计数器 CNT 重新初始化) - 若 TIMx_CR1 寄存器的 UDIS = 0、URS = 0,当计数器 CNT 被触发事件重初始化时产生更新事件。(参考同步控制寄存器的说明)

17.4.6 事件产生寄存器 (TIMx_EGR)

偏移地址: 0x14 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Res.					TG	Res.	CC4G	CC3G	CC2G	CC1G	UG
									w		w	w	w	W	w

Bit	Field	Type	Reset	Description
15: 7	Reserved			保留,读为0

Bit	Field	Туре	Reset	Description
6	TG	W	0x00	产生触发事件 (Trigger generation) 该位由软件置'1',用于产生一个刹车事件,由硬件自动清'0'。 0:无动作 1:TIMx_SR 寄存器的 TIF = 1,若开启对应的中断和 DMA,则产生相应的中断和 DMA
5	Reserved			保留, 读为 0
4	CC4G	W	0x00	产生捕获/比较 4 事件 (Capture/Compare 4 generation) 参考 CC1G 描述。
3	CC3G	W	0x00	产生捕获/比较 3 事件 (Capture/Compare 3 generation) 参考 CC1G 描述。
2	CC2G	W	0x00	产生捕获/比较 2 事件 (Capture/Compare 2 generation) 参考 CC1G 描述。
1	CC1G	W	0x00	产生捕获/比较 1 事件 (Capture/Compare 1 generation) 该位由软件置 1,用于产生一个捕获/比较事件,由硬件自动清 0。 0: 无动作 1: 在通道 CC1 上产生一个捕获/比较事件: 若通道 CC1 配置为输出: 设置 CC1IF=1,若开启对应的中断和 DMA,则产生相应的中断和 DMA。 若通道 CC1 配置为输入: 当前的计数器值被捕获至 TIMx_CCR1 寄存器,设置 CC1IF=1,若开启对应的中断和 DMA,则产生相应的中断和 DMA,则产生相应的中断和 DMA,则产生相应的中断和 DMA,则产生相应的中断和 DMA,则产生相应的中断和 DMA,则产生相应的中断和 DMA,则产生相应的中断和 DMA。若 CC1IF 已经为 1,则设置 CC1OF=1。
0	UG	W	0x00	产生更新事件 (Update generation) 该位由软件置 '1',由硬件自动清 '0'。 0:无动作 1:重新初始化计数器,并产生一个更新事件。注意预分频器的计数器也被清 '0'(但是预分频系数不变)。若在中心对称模式下或 DIR = 0(向上计数)则计数器被清 '0';若DIR = 1(向下计数)则计数器取 TIMx_ARR 的值。

17.4.7 捕获/比较模式寄存器 1(TIMx_CCMR1)

偏移地址: 0x18 复位值: 0x0000

通道可用于输入 (捕获模式) 或输出 (比较模式),通道的方向由相应的 CCxS 定义。该寄存器其他位的作用和输出模式下不同。OCxx 描述了通道在输出模式下的功能,ICxx 描述了通道在输出模式下的功能。因此必须注意,同一个位在输出模式和输入模式下的功能是不同的。

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OC2CE		OC2M		OC2PE	OC2FE	CC2S		OC1CE	OC1M			OC1PE	OC1FE	CC	10
	IC	2F		IC2I	PSC	CC.	23		IC	1F		IC1F	PSC		10
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

输出比较模式:

Bit	Field	Туре	Reset	Description
15	OC2CE	rw	0x00	输出比较 2 清 0 使能 (Output compare 2 clear enable)
14: 12	OC2M	rw	0x00	输出比较 2 模式 (Output compare 2 mode)
11	OC2PE	rw	0x00	输出比较 2 预装载使能 (Output compare 2 preload en-
				able)
10	OC2FE	rw	0x00	输出比较 2 快速使能 (Output compare 4 fast enable)
9: 8	CC2S	rw	0x00	捕获/比较 2 选择 (Capture/Compare 2 selection)
				该位定义通道的方向(输入/输出),及输入脚的选择:
				00: CC2 通道被配置为输出
				01: CC2 通道被配置为输入, IC2 映射在 TI2 上
				10: CC2 通道被配置为输入, IC2 映射在 TI1 上
				11: CC2 通道被配置为输入, IC2 映射在 TRC 上。此模式
				仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存
				器的 TS 位选择)
				注: CC2S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC2E = 0)
				才是可写的。
7	OC1CE	rw	0x00	输出比较 1 清 0 使能 (Output compare 1 clear enable)
				0: OC1REF 不受 ETRF 输入的影响
				1: 当检测到 ETRF 输入高电平时,清除 OC1REF = 0

Bit	Field	Туре	Reset	Description
6: 4	OC1M	ΓW	0x00	输出比较 1 模式 (Output compare 1 mode) 该 3 位定义了输出参考信号 OC1REF 的动作,而 OC1REF 决定了 OC1、OC1N 的值。OC1REF 是高电平有效,而 OC1、OC1N 的有效电平取决于 CC1P、CC1NP 位。 000: 冻结。输出比较寄存器 TIMx_CCR1 与计数器 TIMx_CNT 间的比较对 OC1REF 不起作用 001: 匹配时设置通道 1 为有效电平。当计数器 TIMx_CNT 的值与捕获/比较寄存器 1(TIMx_CCR1) 相同时,强制 OC1REF 为高 010: 匹配时设置通道 1 为无效电平。当计数器 TIMx_CNT 的值与捕获/比较寄存器 1(TIMx_CCR1) 相同时,强制 OC1REF 为低 011: 翻转。当 TIMx_CCR1=TIMx_CNT 时,翻转 OC1REF 的电平 100: 强制为无效电平。强制 OC1REF 为底 110: PWM 模式 1 - 在向上计数时,当 TIMx_CNT < TIMx_CCR1 时通道 1 为有效电平,否则为无效电平;在向下计数时,当 TIMx_CNT > TIMx_CCR1 时通道 1 为无效电平(OC1REF = 0),否则为有效电平(OC1REF = 1) 111: PWM 模式 2 - 在向上计数时,当 TIMx_CNT < TIMx_CCR1 时通道 1 为无效电平,否则为有效电平;在向下计数时,当 TIMx_CNT > TIMx_CCR1 时通道 1 为有效电平,否则为有效电平;在向下计数时,当 TIMx_CNT > TIMx_CCR1 时通道 1 为有效电平,否则为无效电平;在向下计数时,当 TIMx_CNT > TIMx_CCR1 时通道 1 为有效电平,否则为无效电平;注:当 LOCK 级别设为 3(TIMx_BDTR 寄存器中的 LOCK 位)并且 CC1S = 00(该通道配置成输出)时,该位不能被修改。注 2:在 PWM 模式 1 或 PWM 模式 2 中,只有当比较结果改变了或在输出比较模式中从冻结模式切换到 PWM 模式时,OC1REF
3	OC1PE	rw	0x00	电平才改变。 输出比较 1 预装载使能 (Output compare 1 preload enable) 0: 禁止 TIMx_CCR1 寄存器的预装载功能,可随时写入 TIMx_CCR1 寄存器,并且新写入的数值立即起作用 1: 开启 TIMx_CCR1 寄存器的预装载功能,读写操作仅对 预装载寄存器操作,TIMx_CCR1 的预装载值在更新事件到 来时被加载至当前寄存器中 注 1: 当 LOCK 级别设为 3(TIMx_BDTR 寄存器中的 LOCK 位) 并且 CC1S = 00(该通道配置成输出) 时,该位不能被修改。注 2: 仅在单脉冲模式下 (TIMx_CR1 寄存器的 OPM = 1),可以在未确 认预装载寄存器情况下使用 PWM 模式,否则其动作不确定。

Bit	Field	Туре	Reset	Description
2	OC1FE	rw	0x00	输出比较 1 快速使能 (Output compare 1 fast enable)
				该位用于加快 CC 输出对触发输入事件的响应。
				0: 根据计数器与 CCR1 的值, CC1 正常操作,即使触发
				器是打开的。当触发器的输入有一个有效沿时,激活 CC1
				输出的最小延时为 5 个时钟周期
				1:输入到触发器的有效沿的作用就象发生了一次比较匹配。
				因此, OC 被设置为比较电平而与比较结果无关。采样触发
				器的有效沿和 CC1 输出间的延时被缩短为 3 个时钟周期。
				OCFE 只在通道被配置成 PWM1 或 PWM2 模式时起作用
1: 0	CC1S	rw	0x00	捕获/比较 1 选择 (Capture/Compare 1 selection)
				这 2 位定义通道的方向 (输入/输出),及输入脚的选择:
				00: CC1 通道被配置为输出
				01: CC1 通道被配置为输入, IC1 映射在 TI1 上
				10: CC1 通道被配置为输入,IC1 映射在 TI2 上
				11: CC1 通道被配置为输入, IC1 映射在 TRC 上, 此模式
				仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存
				器的 TS 位选择)
				注:CC1S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC1E = 0)
				才是可写的。

输入捕获模式:

Bit	Field	Туре	Reset	Description
15: 12	IC2F	rw	0x00	输入捕获 2 滤波器 (Input capture 2 filter)
11: 10	IC2PSC	rw	0x00	输入/捕获 2 预分频器 (Input capture 2 prescaler)
9: 8	CC2S	rw	0x00	捕获/比较 2 选择 (Capture/Compare 2 selection) 这 2 位定义通道的方向 (输入/输出),及输入脚的选择: 00: CC2 通道被配置为输出 01: CC2 通道被配置为输入,IC2 映射在 TI2 上 10: CC2 通道被配置为输入,IC2 映射在 TI1 上 11: CC2 通道被配置为输入,IC2 映射在 TRC 上,此模式仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存器的 TS 位选择) 注: CC2S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC2E = 0) 才是可写的。

Bit	Field	Туре	Reset	Description
7: 4	IC1F	rw -	0x00	输入捕获 1 滤波器 (Input capture 1 filter) 这几位定义了 TI1 输入的采样频率及数字滤波器长度。数字滤波器由一个事件计数器组成,它记录到 N 个事件后会产生一个输出的跳变: 0000: 无滤波器,以 fDTS 采样 1000: 采样频率 f _{SAMPLING} =f _{DTS} /8, N = 6 0001: 采样频率 f _{SAMPLING} =f _{CK_INT} , N = 2 1001: 采样频率 f _{SAMPLING} =f _{CK_INT} , N = 4 1010: 采样频率 f _{SAMPLING} =f _{CK_INT} , N = 4 1010: 采样频率 f _{SAMPLING} =f _{DTS} /16, N = 5 0011: 采样频率 f _{SAMPLING} =f _{DTS} /16, N = 6 1101: 采样频率 f _{SAMPLING} =f _{DTS} /16, N = 6 1100: 采样频率 f _{SAMPLING} =f _{DTS} /2, N = 6 1100: 采样频率 f _{SAMPLING} =f _{DTS} /2, N = 8 1101: 采样频率 f _{SAMPLING} =f _{DTS} /32, N = 5 0110: 采样频率 f _{SAMPLING} =f _{DTS} /4, N = 6 1110: 采样频率 f _{SAMPLING} =f _{DTS} /4, N = 6 1111: 采样频率 f _{SAMPLING} =f _{DTS} /4, N = 8 1111: 采样频率 f _{SAMPLING} =f _{DTS} /4, N = 8
3: 2	IC1PSC	rw	0x00	输入/捕获 1 预分频器 (Input capture 1 prescaler) 这 2 位定义了 CC1 输入 (IC1) 的预分频系数。 当 CC1E = 0(TIMx_CCER 寄存器中) 时,预分频器复位。 00: 无预分频器,捕获输入口上检测到的每一个边沿都触发一次捕获 01: 每 2 个事件触发一次捕获 10: 每 4 个事件触发一次捕获 11: 每 8 个事件触发一次捕获
1: 0	CC1S	rw	0x00	捕获/比较 1 选择 (Capture/compare 1 selection) 这 2 位定义通道的方向 (输入/输出),及输入脚的选择: 00: CC1 通道被配置为输出 01: CC1 通道被配置为输入,IC1 映射在 TI1 上 10: CC1 通道被配置为输入,IC1 映射在 TI2 上 11: CC1 通道被配置为输入,IC1 映射在 TRC 上,此模式仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存器的 TS 位选择) 注: CC1S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC1E = 0) 才是可写的。

17.4.8 捕获/比较模式寄存器 2(TIMx_CCMR2)

偏移地址: 0x1C 复位值: 0x0000

参看以上 CCMR1 寄存器的描述

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OC4CE		OC4M		OC4PE	OC4FE		10	OC3CE		OC3M		OC3PE	OC3FE	CC	30
	IC	4F		IC4I	PSC		CC4S		IC	3F		IC3F	PSC		33
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

输出比较模式

Bit	Field	Туре	Reset	Description
15	OC4CE	rw	0x00	输出比较 4 清 0 使能 (Output compare 4 clear enable)
14: 12	OC4M	rw	0x00	输出比较 4 模式 (Output compare 4 mode)
11	OC4PE	rw	0x00	输出比较 4 预装载使能 (Output compare 4 preload enable)
10	OC4FE	rw	0x00	输出比较 4 快速使能 (Output compare 4 fast enable)
9: 8	CC4S	rw	0x00	捕获/比较 4 选择 (Capture/Compare 4 selection) 该 2 位定义通道的方向 (输入/输出),及输入脚的选择: 00: CC4 通道被配置为输出 01: CC4 通道被配置为输入,IC4 映射在 TI4 上 10: CC4 通道被配置为输入,IC4 映射在 TI3 上 11: CC4 通道被配置为输入,IC4 映射在 TRC 上,此模式仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存器的 TS 位选择) 注: CC4S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC4E = 0) 才是可写的。
7	OC3CE	rw	0x00	输出比较 3 清 '0' 使能 (Output compare 3 clear enable)
6: 4	OC3M	rw	0x00	输出比较 3 模式 (Output compare 3 mode)
3	OC3PE	rw	0x00	输出比较 3 预装载使能 (Output compare 3 preload enable)
2	OC3FE	rw	0x00	输出比较 3 快速使能 (Output compare 3 fast enable)
1: 0	CC3S	rw	0x00	捕获/比较 3 选择 (Capture/Compare 3 selection) 这 2 位定义通道的方向 (输入/输出),及输入脚的选择: 00: CC3 通道被配置为输出 01: CC3 通道被配置为输入,IC3 映射在 TI3 上 10: CC3 通道被配置为输入,IC3 映射在 TI4 上 11: CC3 通道被配置为输入,IC3 映射在 TRC 上,此模式仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存器的 TS 位选择) 注: CC3S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC3E = 0) 才是可写的。

输入捕获模式

Bit	Field	Туре	Reset	Description
15: 12	IC4F	rw	0x00	输入捕获 4 滤波器 (Input capture 4 filter)
11: 10	IC4PSC	rw	0x00	输入/捕获 4 预分频器 (Input capture 4 prescaler)
9: 8	CC4S	rw	0x00	捕获/比较 4 选择 (Capture/Compare 4 selection) 这 2 位定义通道的方向 (输入/输出),及输入脚的选择: 00: CC4 通道被配置为输出 01: CC4 通道被配置为输入,IC4 映射在 TI4 上 10: CC4 通道被配置为输入,IC4 映射在 TI3 上 11: CC4 通道被配置为输入,IC4 映射在 TRC 上,此模式仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存器的 TS 位选择) 注: CC4S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC4E = 0) 才是可写的。
7: 4	IC3F	rw	0x00	输入捕获 3 滤波器 (Input capture 3 filter)
3: 2	IC3PSC	rw	0x00	输入/捕获 3 预分频器 (Input capture 3 prescaler)
1: 0	CC3S	rw	0x00	捕获/比较 3 选择 (Capture/compare 3 selection) 这 2 位定义通道的方向 (输入/输出),及输入脚的选择: 00: CC3 通道被配置为输出 01: CC3 通道被配置为输入,IC3 映射在 TI3 上 10: CC3 通道被配置为输入,IC3 映射在 TI4 上 11: CC3 通道被配置为输入,IC3 映射在 TRC 上,此模式仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存器的 TS 位选择) 注: CC3S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC3E = 0) 才是可写的。

17.4.9 捕获/比较使能寄存器 (TIMx_CCER)

偏移地址: 0x20 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Re	S.	CC4P	CC4E	Re	s.	CC3P	CC3E	Res.		CC2P	CC2E	R	es.	CC1P	CC1E
		rw	rw			rw	rw			rw	rw			rw	rw

Bit	Field	Type	Reset	Description
15: 14	Reserved			保留,始终读为0
13	CC4P	rw	0x00	输入/捕获 4 输出极性 (Capture/Compare 4 output polarity) 参考 CC1P 的描述。
12	CC4E	rw	0x00	输入/捕获 4 输出使能 (Capture/Compare 4 output enable) 参考 CC1E 的描述。
11: 10	Reserved			保留,始终读为0
9	CC3P	rw	0x00	输入/捕获 3 输出极性 (Capture/Compare 3 output polarity) 参考 CC1P 的描述。

Bit	Field	Туре	Reset	Description
8	CC3E	rw	0x00	输入/捕获 3 输出使能 (Capture/Compare 3 output enable)
				参考 CC1E 的描述。
7: 6	Reserved			保留,始终读为0
5	CC2P	rw	0x00	输入/捕获 2 输出极性 (Capture/Compare 2 output polarity)
				参考 CC1P 的描述。
4	CC2E	rw	0x00	输入/捕获 2 输出使能 (Capture/Compare 2 output enable)
				参考 CC1E 的描述。
3: 2	Reserved			保留,始终读为0
1	CC1P	rw	0x00	输入/捕获 1 输出极性 (Capture/Compare 1 output polarity)
				CC1 通道配置为输出:
				0: OC1 高电平有效
				1: OC1 低电平有效
				CC1 通道配置为输入:
				CC1NP/CC1P 共同选择是 IC1 还是 IC1 的反相信号作为 触发或捕获信号。
				00: 不反相: 捕获发生在 IC1 的上升沿; 当用作外部触发
				器时,IC1 不反相。
				01:反相:捕获发生在 IC1 的下降沿;当用作外部触发器
				时,IC1 反相。
				10: 保留。
				11. 同时捕获双沿。
				注: 当 LOCK 级别 (TIMx_BDTR 寄存器中的 LCCK 位) 设为 3 或
				2 时,该位不能被修改。
0	CC1E	rw	0x00	输入/捕获 1 输出使能 (Capture/Compare 1 output enable)
				CC1 通道配置为输出:
				0: 关闭 - OC1 禁止输出,因此 OC1 的输出电平依赖于
				MOE、OSSI、OSSR、OIS1、OIS1N 和 CC1NE 位的值
				1: 开启 - OC1 信号输出到对应的输出引脚,其输出电平依
				赖于 MOE、OSSI、OSSR、OIS1、OIS1N 和 CC1NE 位
				的值
				CC1 通道配置为输入:
				该位决定了计数器的值是否能捕获入TIMx_CCR1寄存器。
				0: 捕获禁止
				1: 捕获使能

表 51. 标准 Ocx 通道的输出控制位

CCxE 位	OCx 输出状态
0	禁止输出 (OCx = 0,OCx_EN = 0)
1	OCx = OCxREF + 极性,OCx_EN = 1

注:管脚连接到标准的 OCx 通道的外部 I/O 管脚的状态,取决于 OCx 通道状态和 GPIO 以及 AFIO

寄存器。

17.4.10 计数器 (TIMx_CNT)

偏移地址: 0x24

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							C	NT							
rw															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							С	NT							
rw															

Bit	Field	Туре	Reset	Description
31: 16	CNT	rw	0x0000	计数器的高 16 位值 (High counter value)
15: 0	CNT	rw	0x0000	计数器的低 16 位值 (Low counter value)

17.4.11 预分频器 (TIMx_PSC)

偏移地址: 0x28 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PS	sc							
rw															

Bit	Field	Туре	Reset	Description
15: 0	PSC	rw	0x0000	预分频器的值 (Prescaler value)
				计数器的时钟频率 (CK_CNT) 等于 f _{CK_PSC} /(PSC + 1)。
				PSC 包含了每次当更新事件产生时,装入当前预分频器寄
				存器的值。更新事件包括计数器被 TIM_EGR 的 UG 位清
				'0'或被工作在复位模式的从控制器清'0'。

17.4.12 自动装载寄存器 (TIMx_ARR)

偏移地址: 0x2C

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							А	RR							
rw															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							А	RR							
rw															

Bit	Field	Type	Reset	Description
31: 16	ARR	rw	0x0000	自动重装载高 16 位值 (High auto-reload value)
15: 0	ARR	rw	0x0000	自动重装载低 16 位值 (Low auto-reload value)
				ARR 包含了将要装载入实际的自动重装载寄存器的数值。
				详细参考小节 17.3.1: 有关 ARR 的更新和动作。
				当自动重装载的值为空时,计数器不工作。

17.4.13 捕获/比较寄存器 1(TIMx_CCR1)

偏移地址: 0x34

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CC	CR1							
rw	rw	rw	rw	rw	rw	rw	rw								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CC	CR1							
rw	rw	rw	rw	rw	rw	rw	rw								

Bit	Field	Туре	Reset	Description
31: 16	CCR1	rw	0x0000	捕获/比较 1 高 16 位值 (High Capture/Compare 1 value)
15: 0	CCR1	rW	0x0000	捕获/比较 1 低 16 位值 (Low Capture/Compare 1 value) 若 CC1 通道配置为输出: CCR1 包含了装入当前捕获/比较 1 寄存器的值 (预装载值)。 如果在 TIMx_CCMR1 寄存器 (OC1PE 位) 中未选择预装载功能,写入的数值会立即传输至当前寄存器中。否则只有当更新事件发生时,此预装载值才传输至当前捕获/比较 1 寄存器中。当前捕获/比较寄存器参与同计数器 TIMx_CNT的比较,并在 OC1 端口上产生输出信号。若 CC1 通道配置为输入: CCR1 包含了由上一次输入捕获 1 事件 (IC1) 传输的计数
				器值。

17.4.14 捕获/比较寄存器 2(TIMx_CCR2)

偏移地址: 0x38

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CC	CR2							
rw	rw	rw	rw	rw	rw	rw	rw								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CC	CR2							
rw	rw	rw	rw	rw	rw	rw	rw								

Bit	Field	Туре	Reset	Description
31: 16	CCR2	rw	0x0000	捕获/比较 2 高 16 位值 (High Capture/Compare 2 value)
15: 0	CCR2	rw	0x0000	捕获/比较 2 低 16 位值 (Low Capture/Compare 2 value)
				若 CC2 通道配置为输出:
				CCR2 包含了装入当前捕获/比较 2 寄存器的值 (预装载
				值)。
				如果在 TIMx_CCMR2 寄存器 (OC2PE 位) 中未选择预装
				载特性,写入的数值会立即传输至当前寄存器中。否则只有
				当更新事件发生时,此预装载值才传输至当前捕获/比较 2
				寄存器中。当前捕获/比较寄存器参与同计数器 TIMx_CNT
				的比较,并在 OC2 端口上产生输出信号。
				若 CC2 通道配置为输入:
				CCR2 包含了由上一次输入捕获 2 事件 (IC2) 传输的计数
				器值。

17.4.15 捕获/比较寄存器 3(TIMx_CCR3)

偏移地址: 0x3C

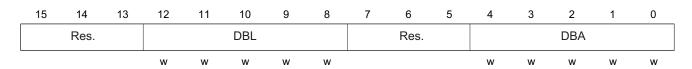
复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							C	CR3							
rw	rw	rw	rw	rw	rw	rw	rw								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							C	CR3							
rw	rw	rw	rw	rw	rw	rw	rw								

Bit	Field	Туре	Reset	Description
31: 16	CCR3	rw	0x0000	捕获/比较 3 高 16 位值 (High Capture/Compare 3 value)
15: 0	CCR3	rw	0x0000	捕获/比较 3 低 16 位值 (Low Capture/Compare 3 value)
				若 CC3 通道配置为输出:
				CCR3 包含了装入当前捕获/比较 3 寄存器的值 (预装载
				值)。
				如果在 TIMx_CCMR3 寄存器 (OC3PE 位) 中未选择预装
				载特性,写入的数值会立即传输至当前寄存器中。否则只有
				当更新事件发生时,此预装载值才传输至当前捕获/比较 3
				寄存器中。当前捕获/比较寄存器参与同计数器 TIMx_CNT
				的比较,并在 OC3 端口上产生输出信号。若 CC3 通道配
				置为输入:
				CCR3 包含了由上一次输入捕获 3 事件 (IC3) 传输的计数
				器值。

17.4.16 捕获/比较寄存器 4(TIMx_CCR4)

偏移地址: 0x40


复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							C	CR4							
rw	rw	rw	rw	rw	rw	rw	rw								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							C	CR4							
rw	rw	rw	rw	rw	rw	rw	rw								

Bit	Field	Туре	Reset	Description
31: 16	CCR4	rw	0x0000	捕获/比较 4 高 16 位值 (High Capture/Compare 4 value)
15: 0	CCR4	rw	0x0000	捕获/比较 4 低 16 位值 (Low Capture/Compare 4 value) 若 CC4 通道配置为输出: CCR4 包含了装入当前捕获/比较 4 寄存器的值 (预装载值)。 如果在 TIMx_CCMR4 寄存器 (OC4PE 位) 中未选择预装载特性,写入的数值会立即传输至当前寄存器中。否则只有当更新事件发生时,此预装载值才传输至当前捕获/比较 4 寄存器中。当前捕获/比较寄存器参与同计数器 TIMx_CNT的比较,并在 OC4 端口上产生输出信号。若 CC4 通道配置为输入:
				CCR4 包含了由上一次输入捕获 4 事件 (IC4) 传输的计数器值。

17.4.17 DMA 控制寄存器 (TIMx_DCR)

偏移地址: 0x48 复位值: 0x0000

Bit	Field	Type	Reset	Description
15: 13	Reserved			保留,始终读为0。

Bit	Field	Туре	Reset	Description
12: 8	DBL	W	0x00	DMA 连续传送长度 (DMA burst length) 这些位定义了 DMA 在连续模式下的传送长度 (当对 TIMx_DMAR 寄存器进行写操作时,定时器则进行一次连 续传送),即:定义传输的次数,传输可以是半字 (双字节)或字节: 00000: 1 次传输 00001: 2 次传输 00010: 3 次传输 10001: 18 次传输 例: 我们考虑这样的传输: DBL = 7,DBA = TIM2_CR1 - 如果 DBL = 7,DBA = TIM2_CR1 表示待传输数据的地址,那么传输的地址由下式给出: (TIMx_CR1 的地址)+ DBA +(DMA 索引),其中 DMA 索引 = DBL 其中 (TIMx_CR1 的地址)+ DBA 再加上 7,给出了将要写入或者读出数据的地址,这样数据的传输将发生在从地址(TIMx_CR1 的地址)+ DBA 开始的 7 个寄存器。根据 DMA数据长度的设置,可能发生以下情况: - 如果设置数据为半字 (16 位),那么数据就会传输给全部 7 个寄存器。 - 如果设置数据为字节,数据仍然会传输给全部 7 个寄存器:第一个寄存器包含第一个 MSB 字节,第二个寄存器包含第一个 LSB 字节,以此类推。因此对于定时器,用户必须指
				定由 DMA 传输的数据宽度。
7: 5 4: 0	Reserved DBA	W	0x00	保留,始终读为 0。 DMA 基地址 (DMA base address) 这些位定义了 DMA 在 连续模式下的基地址 (当对 TIMx_DMAR 寄存器进行写操 作时), DBA 定义为从 TIMx_CR1 寄存器所在地址开始的 偏移量: 00000: TIMx_CR1 00001: TIMx_CR2

17.4.18 连续模式的 DMA 地址 (TIMx_DMAR)

偏移地址: 0x4C 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DM	IAB							
W	W	W	W	W	w	W	W	W	W	W	W	W	W	W	W

Bit	Field	Туре	Reset	Description
15: 0	DMAB	W	0x0000	DMA 连续传送寄存器 (DMA register for burst accesses)
				对 TIMx_DMAR 寄存器的写操作会导致对以下地址所在寄
				存器的存取操作:
				TIMx_CR1 地址 + DBA + DMA 索引,其中: 'TIMx_CR1
				地址'是控制寄存器 1(TIMx_CR1) 所在的地址;
				'DBA'是 TIMx_DCR 寄存器中定义的基地址;
				'DMA 索引'是由 DMA 自动控制的偏移量,它取决于
				TIMx_DCR 寄存器中定义的 DBL。

18 基本定时器 (TIM14)

基本定时器 (TIM14)

18.1 TIM14 简介

基本定时器 TIM14 由一个 16 位的自动装载计数器组成,它由一个可编程的预分频器驱动。它适合多种用途,包含测量输入信号的脉冲宽度 (输入捕获),或者产生输出波形 (输出比较和 PWM)。

使用定时器预分频器和 RCC 时钟控制预分频器,可以实现脉冲宽度和波形周期从几个微秒到几个毫秒的调节。

基本定时器 TIM14 是完全独立的,不共享任何资源。

18.2 TIM14 主要特征

- 16 位自动装载计数器
- 16 位可编程 (可以实时修改) 预分频器, 计数器时钟频率的分频系数为 1~65536 之间的任意数值
- 独立通道
 - 输入捕获
 - 输出比较
 - PWM 生成 (边缘对齐模式)
- 如下事件发生时产生中断/DMA:
 - 更新: 计数器溢出, 计数器初始化 (通过软件)
 - 输入捕获
 - 输出比较

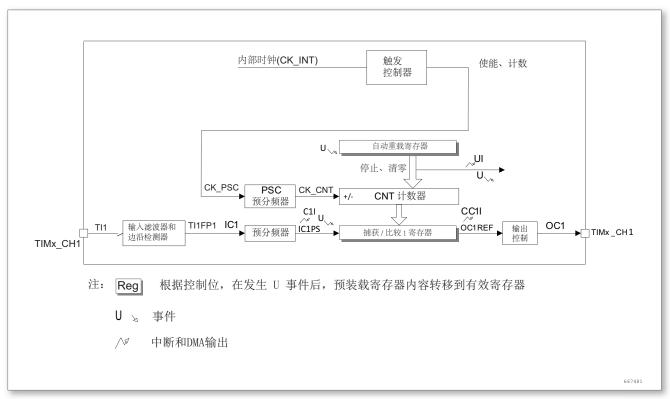


图 172. 基本定时器框图

18.3 TIM14 功能描述

18.3.1 时基单元

可编程基本定时器的主要部分是一个 16 位计数器和与其相关的自动装载寄存器。这个计数器可以向上计数。此计数器时钟由预分频器分频得到。计数器、自动装载寄存器和预分频器寄存器可以由软件读写,在计数器运行时仍可以读写,时基单元包含:

- 计数器寄存器 (TIM14 CNT)
- 预分频器寄存器 (TIM14_PSC)
- 自动装载寄存器 (TIM14 ARR)

自动装载寄存器是预先装载的,写或读自动重装载寄存器将访问预装载寄存器。根据在 TIM14_CR1 寄存器中的自动装载预装载使能位 (ARPE) 的设置,预装载寄存器的内容被立即或在每次的更新事件 UEV 时传送到影子寄存器。当计数器达到溢出条件并当 TIM14_CR1 寄存器中的 UDIS 位等于 0 时,产生更新事件。更新事件也可以由软件产生。随后会详细描述每一种配置下更新事件的产生。

计数器由预分频器的时钟输出 CK_CNT 驱动,仅当设置了计数器 TIM14_CR1 寄存器中的 计数器使能位 (CEN) 时, CK_CNT 才有效。(有关计数器使能的细节,请参见控制器的从模式描述)。

注: 真正的计数器使能信号 CNT EN 是在 CEN 的一个时钟周期后被设置。

预分频器描述

预分频器可以将计数器的时钟频率按 1~65536 之间的任意值分频。它是基于一个 (在TIM14 PSC 寄存器中的)16 位寄存器控制的 16 位计数器。这个控制寄存器带有缓冲器,

它能够在工作时被改变。新的预分频器的参数在下一次更新事件到来时被采用。 下面几张图分别给出了在预分频器运行时,更改计数器参数的例子。

图 173. 当预分频器的参数从 1 变到 2 时, 计数器的时序图

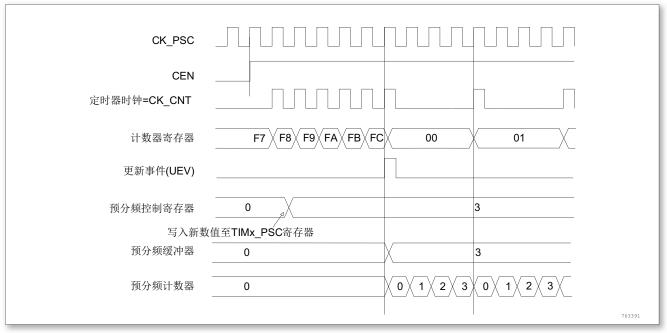


图 174. 当预分频器的参数从 1 变到 4 时, 计数器的时序图

18.3.2 计数模式

向上计数模式

在向上计数模式中,计数器从 0 计数到自动加载值 (TIM14_ARR 计数器的内容),然后重新从 0 开始计数并且产生一个计数器溢出事件。

在 TIM14_EGR 寄存器中设置 UG 位也同样可以产生一个更新事件。

设置 TIM14_CR1 寄存器中的 UDIS 位,可以禁止更新事件;这样可以避免在向预装载寄

存器中写入新值时更新影子寄存器。在 UDIS 位被清 0 之前,将不产生更新事件。但是在应该产生更新事件时,计数器仍会被清 0,同时预分频器的计数也被请 0(但预分频器的数值不变)。此外,如果设置了 TIM14_CR1 寄存器中的 URS 位 (选择更新请求),设置 UG 位将产生一个更新事件 UEV,但硬件不设置 UIF 标志 (即不产生中断): 这是为了避免在捕获模式下清除计数器时,同时产生更新和捕获中断。

当发生一个更新事件时,所有的寄存器都被更新,硬件同时 (依据 URS 位) 设置更新标志位 (TIM14_SR 寄存器中的 UIF 位)。

- 自动装载影子寄存器被重新置入预装载寄存器的值 (TIM14 ARR)
- 预分频器的缓冲区被置入预装载寄存器的值 (TIM14_PSC 寄存器的内容)

下图给出一些例子, 当 TIM14 ARR = 0x36 时计数器在不同时钟频率下的动作:

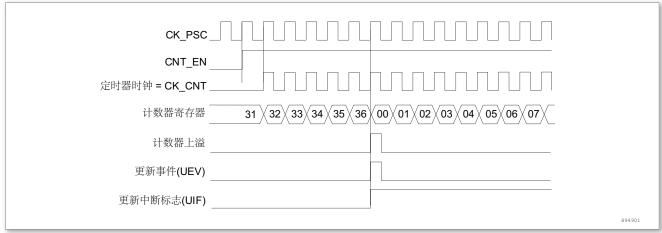


图 175. 计数器时序图,内部时钟分频因子为 1

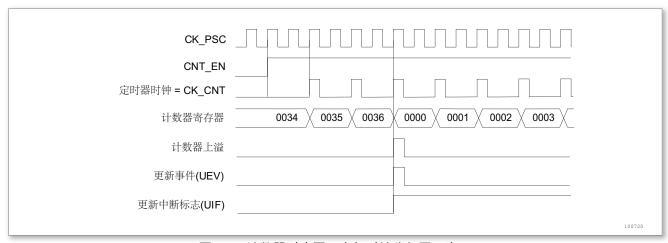


图 176. 计数器时序图,内部时钟分频因子为 2

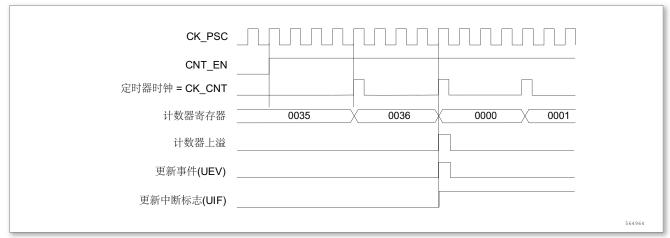


图 177. 计数器时序图,内部时钟分频因子为 4

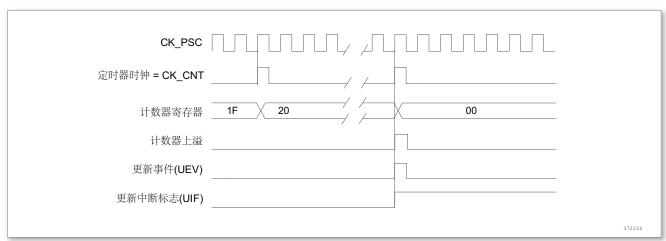


图 178. 计数器时序图,内部时钟分频因子为 N

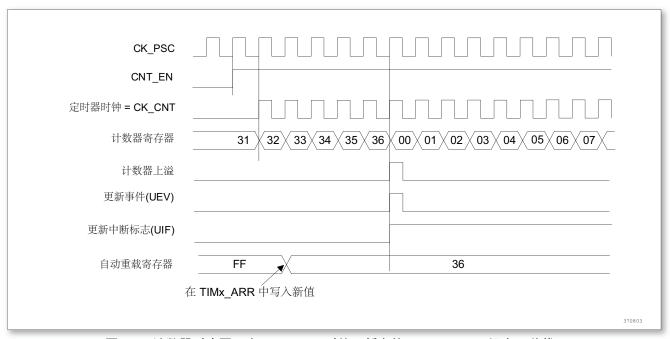


图 179. 计数器时序图, 当 ARPE = 0 时的更新事件 (TIM14_ARR 没有预装载)

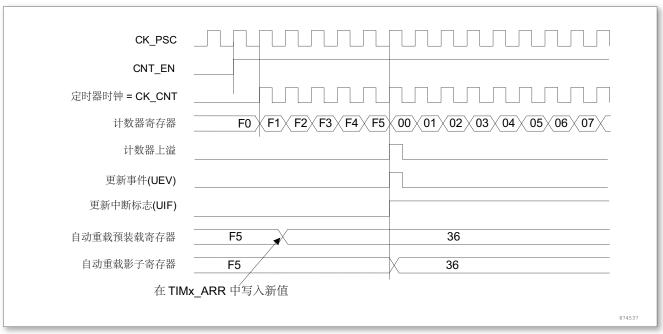


图 180. 计数器时序图, 当 ARPE = 1 时的更新事件 (预装载了 TIM14_ARR)

18.3.3 重复计数器

'时基单元'解释了计数器上溢时是如何产生更新事件 (UEV) 的, 然而事实上它只能在重复计数达到 0 的时候产生。这个特性对产生 PWM 信号非常有用。

这意味着在每 N 次计数上溢时,数据从预装载寄存器传输到影子寄存器 (TIMx_ARR 自动重载入寄存器,TIMx_PSC 预装载寄存器,还有在比较模式下的捕获/比较寄存器 TIMx_CCRx), N 是 TIMx_RCR 重复计数寄存器中的值。

重复计数器在下述任一条件成立时递减:

• 向上计数模式下每次计数器溢出时

重复计数器是自动加载的,重复速率是由 TIMx_RCR 寄存器的值定义。当更新事件由软件产生 (通过设置 TIMx_EGR 中的 UG 位) 或者通过硬件的从模式控制器产生,则无论重复计数器的值是多少,立即发生更新事件,并且 TIMx_RCR 寄存器中的内容被重载入到重复计数器。

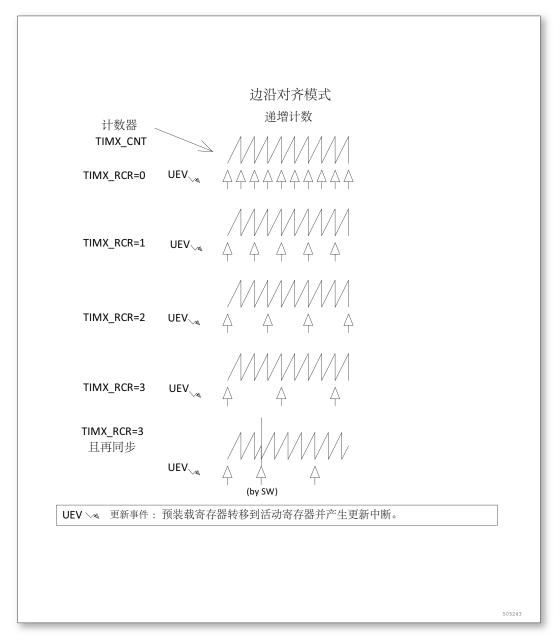


图 181. 不同模式及不同 TIMx_RCR 寄存器设置下更新速率的例子

18.3.4 时钟源

计数器时钟由内部时钟 (CK_INT) 提供.

CEN(TIM14_CR1 寄存器) 和 UG 位 (TIM14_EGR 寄存器) 是事实上的控制位,并且只能被软件修改 (除了 UG 位仍被自动清除)。只要 CEN 位被写成'1',预分频器的时钟就由内部时钟 CK_INT 提供。

下图显示了控制电路和向上计数器在一般模式下,不带预分频器时的操作。

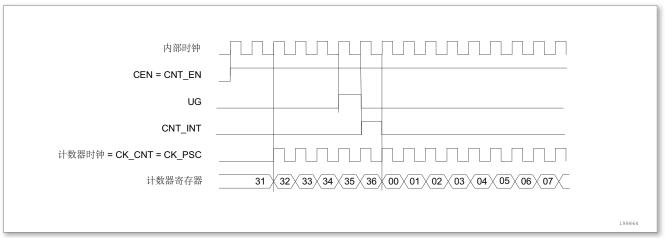


图 182. 一般模式下的控制电路,内部时钟分频因子为 1

18.3.5 捕获/比较通道

每一个捕获/比较通道都是围绕着一个捕获/比较寄存器 (包含影子寄存器),包括捕获的输入部分 (数字滤波、多路复用和预分频器),和输出部分 (比较器和输出控制)。

下面几张图是一个捕获/比较通道概览。输入部分对相应的 Tlx 输入信号采样,并产生一个滤波后的信号 TlxF。然后,一个带极性选择的边缘检测器产生一个信号 (TlxFPx),它可以作为从模式控制器的输入触发或者作为捕获控制。该信号通过预分频进入捕获寄存器 (ICxPS)。

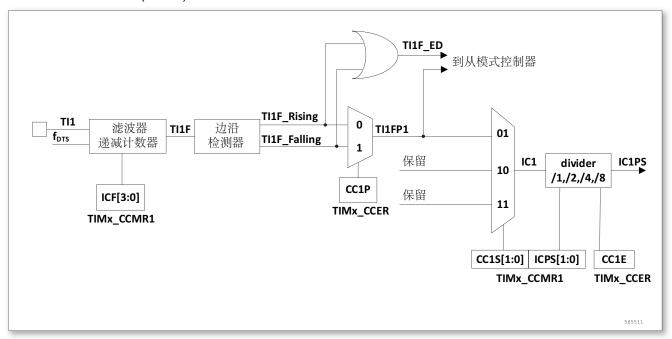


图 183. 捕获/比较通道 (如:通道 1 输入部分)

输出部分产生一个中间波形 OCxREF(高有效) 作为基准,链的末端决定最终输出信号的极性。

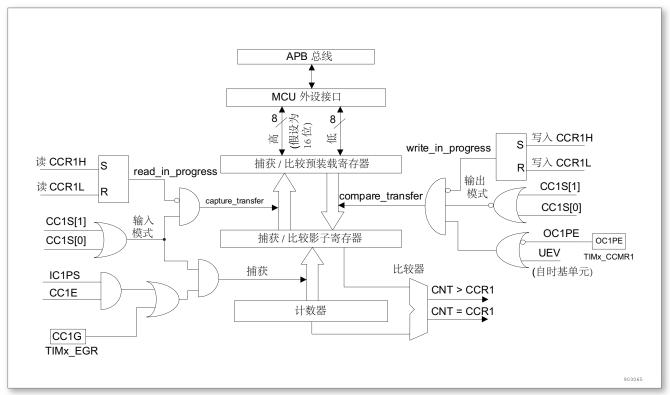


图 184. 捕获/比较通道 1 的主电路

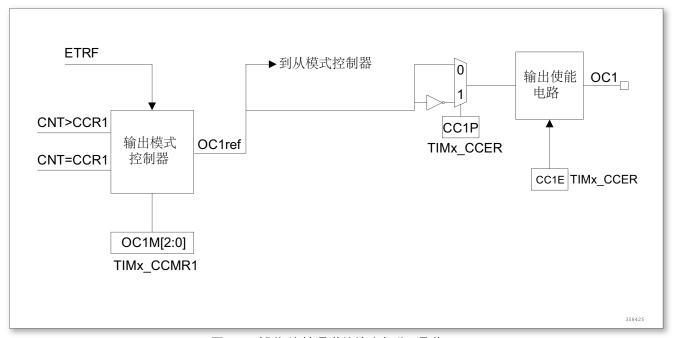


图 185. 捕获/比较通道的输出部分 (通道 1)

捕获/比较模块由一个预装载寄存器和一个影子寄存器组成。读写过程仅操作预装载寄存器。在捕获模式下,捕获发生在影子寄存器上,然后再复制到预装载寄存器中。

在比较模式下,预装载寄存器的内容被复制到影子寄存器中,然后影子寄存器的内容和计数器进行比较。

18.3.6 输入捕获模式

在输入捕获模式下,当检测到 ICx 信号上相应的边沿后,计数器的当前值被锁存到捕获/比较寄存器 (TIM14_CCRx) 中。当捕获事件发生时,相应的 CCxIF 标志 (TIM14_SR 寄存器)被置 1,如果开放了中断或者 DMA 操作,则将产生中断或者 DMA 操作。如果捕获事件发生时 CCxIF 标志已经为高,那么重复捕获标志 CCxOF(TIM14_SR 寄存器)被置 1。写 CCxIF = 0 可清除 CCxIF,或读取存储在 TIM14_CCRx 寄存器中的捕获数据也可清除 CCxIF。写 CCxOF = 0 可清除 CCxOF。

以下例子说明如何在 TI1 输入的上升沿时捕获计数器的值到 TIM14_CCR1 寄存器中,步骤如下:

- 1. 选择有效输入端: TIM14_CCR1 必须连接到 TI1 输入, 所以写入 TIM14_CCMR1 寄存器中的 CC1S = 01, 当 CC1S 不为 00 时,通道被配置为输入,并且 TIM14_CCR1 寄存器变为只读。
- 2. 根据输入信号的特点,配置输入滤波器为所需的带宽(即输入为 Tlx 时,输入滤波器控制位是 TIM14_CCMRx 寄存器中的 ICxF 位)。假设输入信号在最多 5 个时钟周期的时间内抖动,我们须配置滤波器的带宽长于 5 个时钟周期。因此我们可以(以 fDTS 频率)连续采样 8 次,以确认在 Tl1 上一次真实的边沿变换,即在 TlM14_CCMR1 寄存器中写入 IC1F = 0011。
- 3. 选择 TI1 通道的有效转换边沿, 在 TIM14_CCER 寄存器中写入 CC1P = 0 和 CC1NP = 0(上升沿)。
- 4. 配置输入预分频器。在本例中,我们希望捕获发生在每一个有效的电平转换时刻,因此 预分频器被禁止 (写 TIM14_CCMR1 寄存器的 IC1PS = 00)。
- 5. 设置 TIM14 CCER 寄存器的 CC1E = 1,允许捕获计数器的值到捕获寄存器中。
- 6. 如果需要,通过设置 TIM14_DIER 寄存器中的 CC1IE 位允许相关中断请求,通过设置 TIM14 DIER 寄存器中的 CC1DE 位允许 DMA 请求。

当一个输入捕获时:

- 产生有效的电平转换时, 计数器的值被传送到 TIM14_CCR1 寄存器。CC1IF 标志被设置 (中断标志)。当发生至少 2 个连续的捕获时, 而 CC1IF 未曾被清除, CC1OF 也被置 1。
- · 如设置了 CC1IE 位,则会产生一个中断。

为了处理捕获溢出,建议在读出捕获溢出标志之前读取数据,这是为了避免丢失在读出捕获溢出标志之后和读取数据之前可能产生的捕获溢出信息。

注:设置 TIM14_EGR 寄存器中相应的 CCxG 位,可以通过软件产生输入捕获中断请求。

18.3.7 强制输出模式

在输出模式 (TIM14_CCMRx 寄存器中 CCxS = 00) 下,输出比较信号 (OCxREF 和相应的 OCx) 能够直接由软件强置为有效或无效状态,而不依赖于输出比较寄存器和计数器间的比较结果。

置 TIM14_CCMRx 寄存器中相应的 OCxM = 101,即可强置输出比较信号 (OCxREF/OCx)为有效状态。这样 OCxREF 被强置为高电平 (OCxREF 始终为高电平有效),同时 OCx 得到 CCxP 极性位相反的值。例如:CCxP = 0(OCx 高电平有效),则 OCx 被强置为高电平。置 TIM14_CCMRx 寄存器中的 OCxM = 100,可强置 OCxREF 信号为低。该模式下,在 TIM14_CCRx 影子寄存器和计数器之间的比较仍然在进行,相应的标志也会被修改。因此 仍然会产生相应的中断请求。这将会在下面的输出比较模式一节中介绍。

18.3.8 输出比较模式

此功能是用来控制一个输出波形或者指示何时一段给定的的时间已经到时。

当计数器与捕获/比较寄存器的内容相同时,输出比较功能做如下操作:

- 1. 将输出比较模式 (TIM14_CCMRx 寄存器中的 OCxM 位) 和输出极性 (TIM14_CCER 寄存器中的 CCxP 位) 定义的值输出到对应的管脚上。在比较匹配时,输出管脚可以保持它的电平 (OCxM = 000)、被设置成有效电平 (OCxM = 001)、被设置成无有效电平 (OCxM = 010) 或进行翻转 (OCxM = 011)。
- 2. 设置中断状态寄存器中的标志位 (TIM14_SR 寄存器中的 CCxIF 位)。
- 3. 若设置了相应的中断屏蔽 (TIM14_DIER 寄存器中的 CCXIE 位),则产生一个中断。

TIM14_CCMRx 中的 OCxPE 位选择 TIM14_CCRx 寄存器是否需要使用预装载寄存器。在输出比较模式下,更新事件 UEV 对 OCxREF 和 OCx 输出没有影响。同步的精度可以达到计数器的一个计数周期。输出比较模式 (在单脉冲模式下) 也能用来输出一个单脉冲。

输出比较模式的配置步骤:

- 选择计数器时钟 (内部,外部,预分频器)
- 将相应的数据写入 TIM14 ARR 和 TIM14 CCRx 寄存器中
- 如果要产生一个中断请求和/或一个 DMA 请求,设置 CCxIE 位和/或 CCxDE 位
- 选择输出模式,
 - 写 OCxM = '011', 当计数器 CNT 与 CCRx 匹配时翻转 OCx 的输出引脚
 - 写 OCxPE = '0', 禁止预装载
 - 写 CCxP = '0', 选择高电平有效
 - 写 CCxE = '1', 允许输出
- 设置 TIM14 CR1 寄存器的 CEN 位启动计数器

TIM14_CCRx 寄存器能够在任何时候通过软件进行更新以控制输出波形,条件是未使用预装载寄存器 (OCxPE = '0', 否则 TIM14_CCRx 影子寄存器只能在发生下一次更新事件时被更新)。下图给出了一个例子。

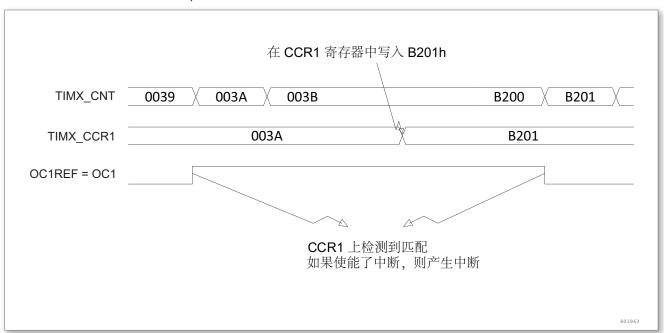


图 186. 输出比较模式, 翻转 OC1

18.3.9 PWM 模式

脉冲宽度调制模式可以产生一个由 TIM14_ARR 寄存器确定频率、由 TIM14_CCRx 寄存器确定占空比的信号。

在 TIM14_CCMRx 寄存器中的 OCxM 位写入'110'(PWM 模式 1)或'111'(PWM 模式 2),能够独立地设置每个 OCx 输出通道产生一路 PWM。必须设置 TIM14_CCMRx 寄存器 OCxPE 位以使能相应的预装载寄存器,最后还要设置 TIM14_CR1 寄存器的 ARPE 位使能自动重装载的预装载寄存器 (在向上计数模式中)。

仅当发生一个更新事件的时候,预装载寄存器才能被传送到影子寄存器,因此在计数器开始计数之前,必须通过设置 TIM14_EGR 寄存器中的 UG 位来初始化所有的寄存器。

OCx 的极性可以通过软件在 TIM14_CCER 寄存器中的 CCxP 位设置,它可以设置为高电平有效或低电平有效。TIM14_CCER 寄存器中的 CCxE 位控制 OCx 输出使能。详见 TIM14 CCERx 寄存器的描述。

在 PWM 模式 (模式 1 或模式 2) 下, TIM14_CNT 和 TIM14_CCRx 始终在进行比较是否符合 TIM14_CNT ≤ TIM14_CCRx。

因为本计数器是向上计数只能产生边沿对齐的 PWM 模式。

PWM 边沿对齐模式

下面是一个 PWM 模式 1 的例子。当 TIM14_CNT < TIM14_CCRx 时 PWM 信号参考 OCxREF 为高,否则为低。如果 TIM14_CCRx 中的比较值大于自动重装载值 (TIM14_ARR),则 OCxREF 保持为 '1'。如果比较值为 0,则 OCxREF 保持为 '0'。下图为 TIM14_ARR = 8 时边沿对齐的 PWM 波形实例。

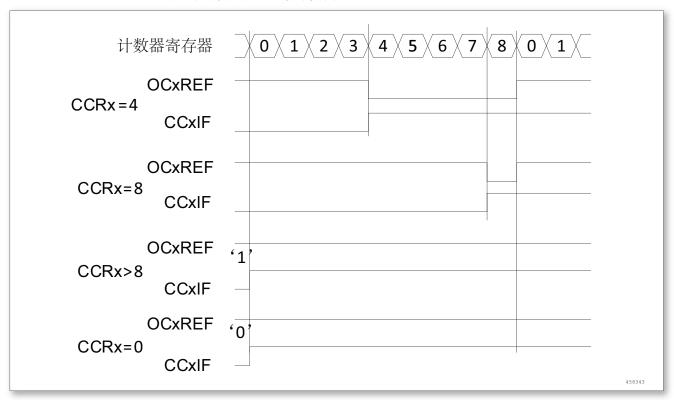


图 187. 边沿对齐的 PWM 波形 (ARR = 8)

18.3.10 调试模式

当微控制器进入调试模式 (Cortex®-M0 核停止),根据 DBG 模块中 DBG_TIMx_STOP 的设置,TIM14 计数器或者继续正常操作,或者停止。

18.4 TIM14 寄存器描述

表 52. TIM14 寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	TIM14_CR1	控制寄存器 1	0x00000000	小节 18.4.1
0x0C	TIM14_DIER	中断使能寄存器	0x0000000	小节 18.4.2
0x10	TIM14_SR	状态寄存器	0x0000000	小节 18.4.3
0x14	TIM14_EGR	事件产生寄存器	0x00000000	小节 18.4.4
0x18	TIM14_CCMR1	捕获/比较模式寄存器 1	0x00000000	小节 18.4.5
0x20	TIM14_CCER	捕获/比较使能寄存器	0x0000000	小节 18.4.6
0x24	TIM14_CNT	计数器	0x0000000	小节 18.4.7
0x28	TIM14_PSC	预分频器	0x00000000	小节 18.4.8
0x2C	TIM14_ARR	自动装载寄存器	0x0000000	小节 18.4.9
0x30	TIM14_RCR	重复计数寄存器	0x00000000	小节 18.4.10
0x34	TIM14_CCR1	捕获/比较寄存器 1	0x00000000	小节 18.4.11
0x44	TIM14_BDTR	刹车和死区寄存器	0x00000000	小节 18.4.12

18.4.1 控制寄存器 1(TIM14_CR1)

偏移地址: 0x00 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Re	served			CKD		ARPE	RPE Reserved			URS	UDIS	CEN	
						rw	rw	rw					rw	rw	rw

Bit	Field	Туре	Reset	Description
15: 10	Reserved			保留, 读为 0
9: 8	CKD	rw	0x00	时钟分频因子 (Clock division) 这 2 位定义在定时器时钟 (CK_INT) 频率、死区时间和由 死区发生器与数字滤波器 (ETR, Tlx) 所用的采样频率之间 的分频比例。 00: t _{DTS} = t _{CK_INT} 01: t _{DTS} = 2 x t _{CK_INT} 10: t _{DTS} = 4 x t _{CK_INT}
7	ARPE	rw	0x00	11:保留,不要使用这个配置自动重装载预装载允许位 (Auto-reload preload enable)0: TIM14_ARR 寄存器没有缓冲1: TIM14_ARR 寄存器被装载缓冲器

336/487

Bit	Field	Туре	Reset	Description
6: 3	Reserved			保留, 读为 0
2	URS	rw	0x00	更新请求源 (Update request source) 软件通过该位选择 UEV 事件的源。 0: 如果使能了 UEV 则下述任一事件产生 UEV: - 计数器溢出 - 设置 UG 位 - 从模式控制器产生的更新 1: 如果使能了 UEV 只有计数器溢出产生 UEV 事件
1	UDIS	rw	0x00	禁止更新 (Update disable) 软件通过该位允许/禁止 UEV事件的产生 0: 允许 UEV。更新 (UEV)事件由下述任一事件产生: - 计数器溢出 - 设置 UG 位 1: 禁止 UEV。不产生更新事件,影子寄存器 (ARR、PSC、CCRx) 保持它们的值。如果设置了 UG 位则计数器和预分频器被重新初始化。
0	CEN	rw	0x00	使能计数器 (Counter enable) 0: 禁止计数器 1: 使能计数器。

18.4.2 中断使能寄存器 (TIM14_DIER)

偏移地址: 0x0C 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Rese	erved							CC1IE	UIE

Bit	Field	Туре	Reset	Description
15:2	Reserved			保留, 读为 0
1	CC1IE	rw	0x00	捕获/比较 1 中断使能 (Capture/Compare 1 interrupt enable) 0: CC1 中断禁止 1: CC1 中断允许
0	UIE	rw	0x00	更新中断使能 (Update interrupt enable) 0:禁止更新中断 1:允许更新中断

18.4.3 状态寄存器 (TIM14_SR)

偏移地址: 0x10

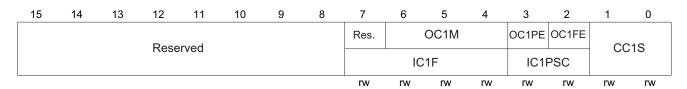
复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Res	erved			CC1OF			F	Reserve	d			CC1IF	UIF
						rc_w0								rc_w0	rc_w0

Bit	Field	Туре	Reset	Description
15: 10	Reserved			保留,读为0
9	CC1OF	rc_w0	0x00	捕获/比较 1 重复捕获标记 (Capture/Compare 1 overcapture flag) 仅当相应的通道被配置为输入捕获时,该标记可由硬件置 1。写 0 可清除该位。 0: 无重复捕获产生; 1: 计数器的值被捕获到 TIM14_CCR1 寄存器时,CC1IF的状态已经为 1。
8: 2	Reserved			保留,读为0
1	CC1IF	rc_w0	0x00	捕获/比较 1 中断标记 (Capture/Compare 1 interrupt flag) 如果通道 CC1 配置为输出模式: 当计数器值与比较值匹配时该位由硬件置'1',它由软件清'0'。 0: 无匹配发生 1: TIM14_CNT 的值与 TIM14_CCR1 的值匹配当 TIM14_CCR1 的内容大于 TIM14_ARR 时,在计数器溢出时 CC1IF 位变高。如果通道 CC1 配置为输入模式: 当捕获事件发生时该位由硬件置'1',它由软件清 0 或通过读 TIM14_CCR1 清'0'。0: 无输入捕获产生1: 计数器值已被捕获(拷贝)至 TIM14_CCR1(在 IC1 上检测到与所选极性相同的边沿)
0	UIF	rc_w0	0x00	更新中断标记 (Update interrupt flag) 当产生更新事件时该位由硬件置'1'。它由软件清'0'。 0: 无更新事件产生 1: 更新中断等待响应。当寄存器被更新时该位由硬件置'1': 一若 TIM14_CR1 寄存器的 UDIS = 0、当计数溢出时; 一若 TIM14_CR1 寄存器的 UDIS = 0、URS = 0,通过软件写 TIM14_EGR 寄存器的 UG 位重初始化定时器时。

18.4.4 事件产生寄存器 (TIM14_EGR)

偏移地址: 0x14 复位值: 0x0000


15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Rese	erved							CC1G	UG
														14/	14/

Bit	Field	Туре	Reset	Description
15: 2	Reserved			保留, 读为 0
1	CC1G	W	0x00	产生捕获/比较 1 事件 (Capture/Compare 1 generation) 该位由软件置 1,用于产生一个捕获/比较事件,由硬件自动清 0。 0:无动作 1:在通道 CC1 上产生一个捕获/比较事件:若通道 CC1 配置为输出:设置 CC1IF=1,若开启对应的中断则产生相应的中断。若通道 CC1 配置为输入:当前的计数器值被捕获至 TIM14_CCR1 寄存器,设置 CC1IF = 1,若开启对应的中断则产生相应的中断。若
				CC1IF 已经为 1,则设置 CC1OF = 1。
0	UG	W	0x00	产生更新事件 (Update generation) 该位由软件置 '1',由硬件自动清 '0'。 0:无动作 1:重新初始化计数器,并产生一个更新事件。注意预分频器的计数器也被清 '0' (但是预分频系数不变)。计数器被清 '0'。

18.4.5 捕获/比较模式寄存器 1(TIM14_CCMR1)

偏移地址: 0x18 复位值: 0x0000

通道可用于输入 (捕获模式) 或输出 (比较模式),通道的方向由相应的 CCxS 定义。该寄存器其他位的作用和输出模式下不同。OCxx 描述了通道在输出模式下的功能,ICxx 描述了通道在输出模式下的功能。因此必须注意,同一个位在输出模式和输入模式下的功能是不同的。

输出比较模式:

Bit	Field	Туре	Reset	Description
15:7	Reserved			保留,读为0

Bit	Field	Туре	Reset	Description
6: 4	OC1M	rw -	0x00	输出比较 1 模式 (Output compare 1 mode) 该 3 位定义了输出参考信号 OC1REF 的动作,而 OC1REF 决定了 OC1 的值。OC1REF 是高电平有效,而 OC1 的有效电平取决于 CC1P 位。 000: 冻结。输出比较寄存器 TIM14_CCR1 与计数器 TIM14_CNT 间的比较对 OC1REF 不起作用 001:匹配时设置通道 1 为有效电平。当计数器 TIM14_CNT 的值与捕获/比较寄存器 1(TIM14_CCR1) 相同时,强制 OC1REF 为高 010:匹配时设置通道 1 为无效电平。当计数器 TIM14_CNT 的值与捕获/比较寄存器 1(TIM14_CCR1) 相同时,强制 OC1REF 为低 011: 翻转。当 TIM14_CCR1=TIM14_CNT 时,翻转 OC1REF 的电平 100: 强制为无效电平。强制 OC1REF 为低 101: 强制为有效电平。强制 OC1REF 为高 110: PWM 模式 1,当 TIM14_CNT < TIM14_CCR1 时通道 1 为有效电平,否则为无效电平 111: PWM 模式 2,当 TIM14_CNT < TIM14_CCR1 时通道 1 为无效电平,否则为有效电平。 注: 在 PWM 模式 1 或 PWM 模式 2 中,只有当比较结果改变了或在输出比较模式中从冻结模式切换到 PWM 模式时,OC1REF 电平才改变。
3	OC1PE	ΓW	0x00	输出比较 1 预装载使能 (Output compare 1 preload enable) 0: 禁止 TIM14_CCR1 寄存器的预装载功能,可随时写入 TIM14_CCR1 寄存器,并且新写入的数值立即起作用 1: 开启 TIM14_CCR1 寄存器的预装载功能,读写操作仅 对预装载寄存器操作,TIM14_CCR1 的预装载值在更新事 件到来时被加载至当前寄存器中 注: 仅在单脉冲模式下 (TIM14_CR1 寄存器的 OPM = '1'),可 以在未确认预装载寄存器情况下使用 PWM 模式,否则其动作不确定。
2	OC1FE	rw	0x00	输出比较 1 快速使能 (Output compare 1 fast enable) 该位用于加快 CC 输出对触发输入事件的响应。 0: 根据计数器与 CCR1 的值,CC1 正常操作,即使触发器是打开的。当触发器的输入有一个有效沿时,激活 CC1 输出的最小延时为 5 个时钟周期 1:输入到触发器的有效沿的作用就象发生了一次比较匹配。因此,OC 被设置为比较电平而与比较结果无关。采样触发器的有效沿和 CC1 输出间的延时被缩短为 3 个时钟周期。OCFE 只在通道被配置成 PWM1 或 PWM2 模式时起作用

Bit	Field	Туре	Reset	Description
1: 0	CC1S	rw	0x00	捕获/比较 1 选择 (Capture/Compare 1 selection)
				这 2 位定义通道的方向 (输入/输出),及输入脚的选择:
				00: CC1 通道被配置为输出
				01: CC1 通道被配置为输入,IC1 映射在 TI1 上
				10: 保留
				11: 保留
				注: CC1S 仅在通道关闭时 (TIM14_CCER 寄存器的 CC1E = 0)
				才是可写的。

输入捕获模式:

Bit	Field	Type	Reset	Description
15:8	Reserved			保留, 读为 0
7: 4	IC1F	rw	0x00	输入捕获 1 滤波器 (Input capture 1 filter)
				这几位定义了 TI1 输入的采样频率及数字滤波器长度。数
				字滤波器由一个事件计数器组成,它记录到 N 个事件后会
				产生一个输出的跳变:
				0000: 无滤波器,以 fDTS 采样
				1000:采样频率 f _{SAMPLING} =f _{DTS} /8, N = 6
				0001: 采样频率 f _{SAMPLING} =f _{CK_INT} , N = 2
				1001:采样频率 f _{SAMPLING} =f _{DTS} /8, N = 8
				0010:采样频率 f _{SAMPLING} =f _{CK_INT} , N = 4
				1010:采样频率 f _{SAMPLING} =f _{DTS} /16, N = 5
				0011: 采样频率 f _{SAMPLING} =f _{CK_INT} ,N = 8
				1011: 采样频率 f _{SAMPLING} =f _{DTS} /16, N = 6
				0100: 采样频率 f _{SAMPLING} =f _{DTS} /2, N = 6
				1100: 采样频率 f _{SAMPLING} =f _{DTS} /16, N = 8
				0101:采样频率 f _{SAMPLING} =f _{DTS} /2, N = 8
				1101:采样频率 f _{SAMPLING} =f _{DTS} /32, N = 5
				0110:采样频率 f _{SAMPLING} =fDTS/4, N = 6
				1110:采样频率 f _{SAMPLING} =f _{DTS} /32, N = 6
				0111:采样频率 f _{SAMPLING} =f _{DTS} /4, N = 8
				1111:采样频率 f _{SAMPLING} =f _{DTS} /32,N = 8
3: 2	IC1PSC	rw	0x00	输入/捕获 1 预分频器 (Input capture 1 prescaler)
				这 2 位定义了 CC1 输入 (IC1) 的预分频系数。
				当 CC1E = 0(TIM14_CCER 寄存器中) 时,预分频器复位。
				00: 无预分频器,捕获输入口上检测到的每一个边沿都触
				发一次捕获
				01: 每 2 个事件触发一次捕获
				10: 每 4 个事件触发一次捕获
				11: 每8个事件触发一次捕获

Bit	Field	Туре	Reset	Description
1: 0	CC1S	rw	0x00	捕获/比较 1 选择 (Capture/compare 1 selection)
				这 2 位定义通道的方向 (输入/输出),及输入脚的选择:
				00: CC1 通道被配置为输出
				01: CC1 通道被配置为输入, IC1 映射在 TI1 上
				10: 保留
				11: 保留
				注: CC1S 仅在通道关闭时 (TIM14_CCER 寄存器的 CC1E = 0)
				才是可写的。

18.4.6 捕获/比较使能寄存器 (TIM14_CCER)

偏移地址: 0x20 复位值: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CC1NP Res. CC1P CC1E

rw rv

rw

Bit	Field	Туре	Reset	Description
15: 4	Reserved			保留, 读为 0
3	CC1NP	rw	0x00	捕获/比较 1 互补输出极性 (Capture/Compare 1 complementary output Polarity) 通道 CC1 配置为输出时,CC1NP必须操持为清除,CC1NP = 0; 通道 CC1 配置为输入时,CC1NP 与 CC1P 联合控制 TI1FP1 的极性参考 CC1P 描述
2	Reserved			保留, 读为 0
1	CC1P	rw	0x00	捕获/比较 1 输出极性 (Capture/Compare 1 output polarity) CC1 通道配置为输出: 0: OC1 高电平有效 1: OC1 低电平有效 CC1 通道配置为输入: CC1NP/CC1P 共同选择是 IC1 还是 IC1 的反相信号作为 触发或捕获信号 00: 不反相: 捕获发生在 IC1 的上升沿; 当用作外部触发器时, IC1 不反相 01: 反相: 捕获发生在 IC1 的下降沿; 当用作外部触发器 时, IC1 反相 10: 保留 11: 同时捕获双沿 注: 当 LOCK 级别设为 2 或 3(TIMx_BDTR 寄存器中的 LOCK 位) 并且 CC1S = '00' (该通道配置成输出) 时,该位不能被修改。

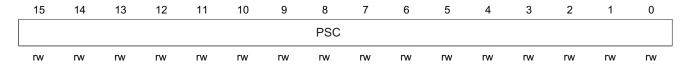
Bit	Field	Туре	Reset	Description
0	CC1E	rw	0x00	捕获/比较 1 输出使能 (Capture/Compare 1 output enable)
				CC1 通道配置为输出:
				0: 关闭 – OC1 禁止输出
				1: 开启 - OC1 信号输出到对应的输出引脚
				CC1 通道配置为输入:该位决定了计数器的值是否能捕获
				入 TIM14_CCR1 寄存器。
				0: 捕获禁止
				1: 捕获使能

表 53. 标准 OCx 通道的输出控制位

CCxE 位	OCx 输出状态
0	禁止输出 (OCx = 0,OCx_EN = 0)
1	OCx = OCxREF + 极性,OCx_EN = 1

注:连接到标准 OCx 通道的外部 I/O 引脚状态,取决于 OCx 通道状态和 GPIO 寄存器。

18.4.7 计数器 (TIM14_CNT)


偏移地址: 0x24 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CNT								
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bit	Field	Туре	Reset	Description
15: 0	CNT	rw	0x0000	计数器的值 (counter value)

18.4.8 预分频器 (TIM14_PSC)

偏移地址: 0x28 复位值: 0x0000

Bit	Field	Type	Reset	Description
15: 0	PSC	rw	0x0000	预分频器的值 (Prescaler value)
				计数器的时钟频率 (CK_CNT) 等于 f _{CK_PSC} /(PSC + 1)。
				PSC 包含了每次当更新事件产生时,装入当前预分频器寄
				存器的值。

18.4.9 自动装载寄存器 (TIM14_ARR)

偏移地址: 0x2C 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							ARR								
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bit	Field	Туре	Reset	Description
15: 0	ARR	rw	0x0000	自动重装载寄存器的值 (Auto-reload value)
				ARR 包含了将要装载入实际的自动重装载寄存器的数值。
				详细参考时基单元章节:有关 ARR 的更新和动作。
				当自动重装载的值为空时,计数器不工作。

18.4.10 重复计数寄存器 (TIM14_RCR)

偏移地址: 0x30

复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved										R	EP			
								rw							

Bit	Field	Туре	Reset	Description
15: 8	Reserved			保留,始终读为0。
7: 0	REP	rw	0x00	重复计数器的值 (Repetition counter value) 预装载寄存器被使能后,这些位允许用户设置比较寄存器的更新速率 (即周期性地从预装载寄存器传输到当前寄存器); 如果允许产生更新中断,则会同时影响产生更新中断的速率。 每次 REP_CNT 向下计数到 0,会产生一个更新事件并且计数器 REP_CNT 重新从 REP 值开始计数。由于 REP_CNT 只有在周期更新事件 U_RC 发生时才重载 REP 值,因此对 TIMx_RCR 寄存器写入的新值只在下次周期更新事件发生时才起作用。这意味着在 PWM 模式中,(REP+1) 对应着在边沿对齐模式下 PWM 周期的数目。

18.4.11 捕获/比较寄存器 1(TIM14_CCR1)

偏移地址: 0x34 复位值: 0x0000

UM_MM32SPIN2x_p_Ver1.19

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CCR	1							
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bit	Field	Туре	Reset	Description
15: 0	CCR1	rw	0x0000	捕获/比较 1 的值 (Capture/Compare 1 value)
				若 CC1 通道配置为输出:
				CCR1 包含了装入当前捕获/比较 1 寄存器的值 (预装载
				值)。
				如果在 TIM14_CCMR1 寄存器 (OC1PE 位) 中未选择
				预装载功能,写入的数值会立即传输至当前寄存器中。否
				则只有当更新事件发生时,此预装载值才传输至当前捕
				获/比较 1 寄存器中。当前捕获/比较寄存器参与同计数器
				TIM14_CNT 的比较,并在 OC1 端口上产生输出信号。
				若 CC1 通道配置为输入:
				CCR1 包含了由上一次输入捕获 1 事件 (IC1) 传输的计数
				器值。

18.4.12 刹车和死区寄存器 (TIM14_BDTR)

偏移地址: 0x44

复位值: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOE Reserved

rw

Bit	Field	Туре	Reset	Description
15	MOE	rw	0x00	MOE: 主输出使能 (Main output enable)
				0: 禁止输出
				1: 如果设置了相应的使能位 (TIM14_CCER 寄存器的
				CCxE、CCxNE 位),则开启输出
				有关 OC/OCN 使能的细节,参见小节 18.4.6, 捕获/比较使
				能寄存器 (TIM14_CCER)。
14: 0	Reserved			保留,始终读为0

19

基本定时器 (TIM16/17)

基本定时器 (TIM16/17)

19.1 TIM16/17 简介

基本定时器 TIM16/17 由一个 16 位自动装载计数器组成,由一个可编程的预分频器驱动。它适合多种用途,包含测量输入信号的脉冲宽度 (输入捕获),或者产生输出波形 (输出比较和 PWM)。

使用定时器预分频器和 RCC 时钟控制预分频器,可以实现脉冲宽度和波形周期从几个微秒到几个毫秒的调节。

基本定时器 TIM16/17 是完全独立的,它们不共享任何资源。

19.2 主要特征

- 16 位向上自动装载寄存器
- 16 位可编程 (可以实时修改) 预分频器, 计数器时钟频率的分频系数为 1~65536 之间的任意数值
- 1 个独立通道:
 - 输入捕获
 - 输出比较
 - PWM 生成 (边缘对齐模式)
 - 单脉冲模式输出
- 可编程死区时间的互补输出
- 允许在指定数目的计数器周期之后更新定时器寄存器的重复计数器
- 刹车输入信号可以将定时器输出信号置于复位状态或者一个已知状态
- 如下事件发生时产生中断/DMA:
 - 更新: 计数器溢出
 - 输入捕获
 - 输出比较
 - 刹车信号输入

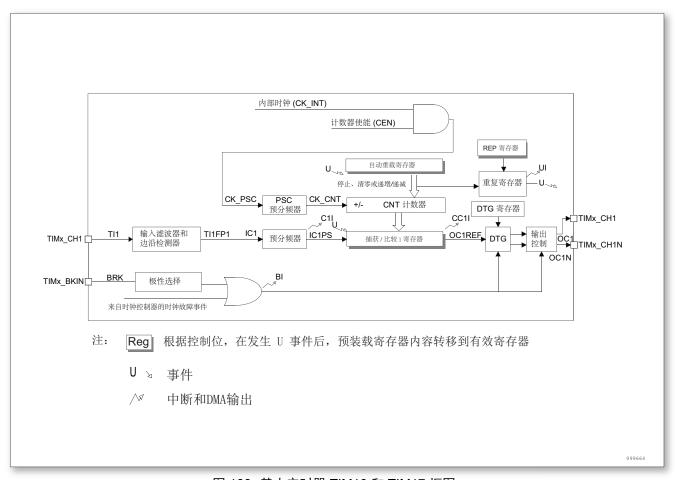


图 188. 基本定时器 TIM16 和 TIM17 框图

19.3 功能描述

19.3.1 时基单元

可编程基本定时器的主要部分是一个 16 位计数器和与其相关的自动装载寄存器。这个计数器可以向上计数,此计数器时钟由预分频器分频得到。计数器、自动装载寄存器和预分频器寄存器可以由软件读写,在计数器运行时仍可以读写。时基单元包含:

- 计数器寄存器 (TIMx CNT)
- 预分频器寄存器 (TIMx_PSC)
- 自动装载寄存器 (TIMx_ARR)
- 重复次数寄存器 (TIMx_RCR)

自动装载寄存器是预先装载的,写或读自动重装载寄存器将访问预装载寄存器。根据在 TIMx_CR1 寄存器中的自动装载预装载使能位 (ARPE) 的设置,预装载寄存器的内容被立即或在每次的更新事件 UEV 时传送到影子寄存器。当计数器达到溢出条件并当 TIMx_CR1 寄存器中的 UDIS 位等于 0 时,产生更新事件。更新事件也可以由软件产生。随后会详细描述每一种配置下更新事件的产生。

计数器由预分频器的时钟输出 CK_CNT 驱动,仅当设置了计数器 TIMx_CR1 寄存器中的 计数器使能位 (CEN) 时, CK_CNT 才有效。(有关计数器使能的细节,请参见控制器的从模式描述)。

注: 真正的计数器开始计数在 CEN 的一个时钟周期后被设置。

预分频器描述

预分频器可以将计数器的时钟频率按 1~65536 之间的任意值分频。它是基于一个 (在 TIMx_PSC 寄存器中的)16 位寄存器控制的 16 位计数器。这个控制寄存器带有缓冲器,它能够在工作时被改变。新的预分频器参数在下一次更新事件到来时被采用。

下图给出了在预分频器运行时更改计数器参数的例子。

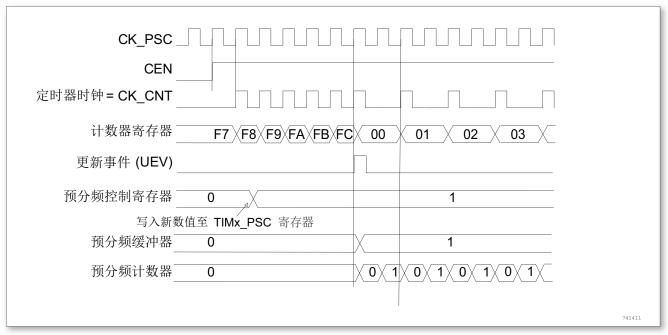


图 189. 当预分频器的参数从 1 变到 2 时, 计数器的时序图

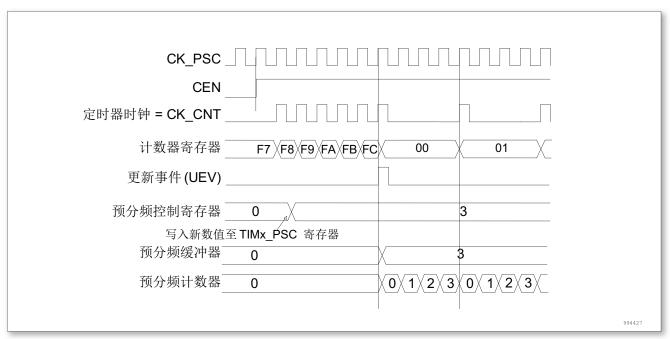


图 190. 当预分频器的参数从 1 变到 4 时, 计数器的时序图

19.3.2 计数模式

向上计数模式

在向上计数模式中,计数器从 0 计数到自动加载值 (TIMx_ARR 计数器的内容),然后重新 从 0 开始计数并且产生一个计数器溢出事件。

如果使用了重复计数器功能,在向上计数达到设置的重复计数次数 (TIMx_RCR) 时,才产生更新事件 (UEV);否则每次计数器溢出时都会产生更新事件。每次计数器溢出时可以产生更新事件,在 TIMx_EGR 寄存器中 (通过软件方式或者使用从模式控制器) 设置 UG 位也同样可以产生一个更新事件。

设置 TIMx_CR1 寄存器中的 UDIS 位,可以禁止更新事件;这样可以避免在向预装载寄存器中写入新值时更新影子寄存器。在 UDIS 位被清'0'之前,将不产生更新事件。但是在应该产生更新事件时,计数器仍会被清'0',同时预分频器的计数也被清'0'(但预分频系数不变)。此外,如果设置了 TIMx_CR1 寄存器中的 URS 位 (选择更新请求),设置 UG位将产生一个更新事件 UEV,但硬件不设置 UIF 标志 (即不产生中断或 DMA 请求);这是为了避免在捕获模式下清除计数器时,同时产生更新和捕获中断。当发生一个更新事件时,所有的寄存器都被更新,硬件同时 (依据 URS 位)设置更新标志位 (TIMx_SR 寄存器中的UIF 位)。

- 重复计数器被重新加载为 TIMx RCR 寄存器的内容。
- 自动装载影子寄存器被重新置入预装载寄存器的值 (TIMx_ARR)。
- 预分频器的缓冲区被置入预装载寄存器的值 (TIMx_PSC 寄存器的内容)。

下图给出一些例子,当 TIMx_ARR = 0x36 时计数器在不同时钟频率下的动作。

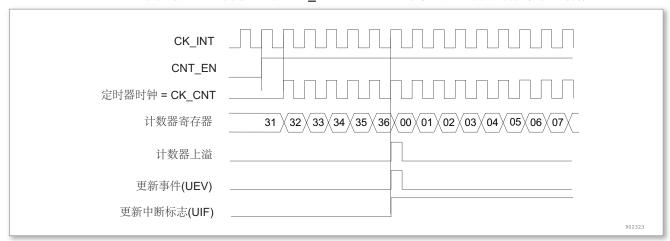


图 191. 计数器时序图,内部时钟分频因子为 1

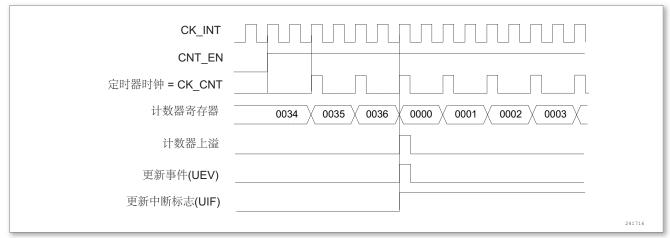


图 192. 计数器时序图,内部时钟分频因子为 2

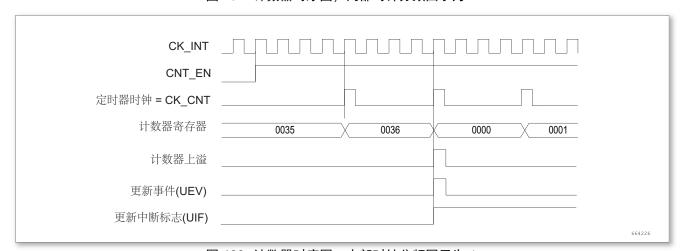


图 193. 计数器时序图,内部时钟分频因子为 4

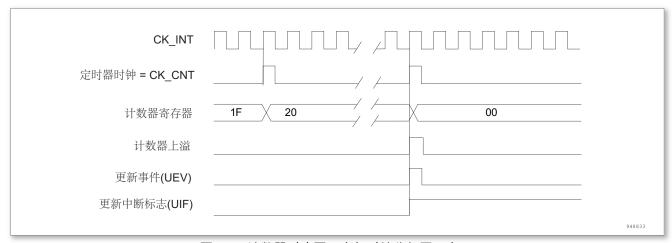


图 194. 计数器时序图,内部时钟分频因子为 N

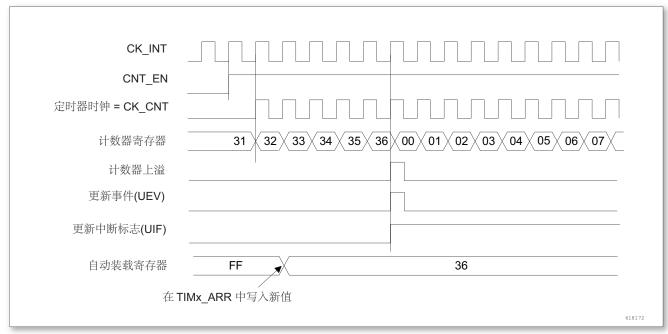


图 195. 计数器时序图, 当 ARPE = 0 时的更新事件 (TIMx_ARR 没有预装载)

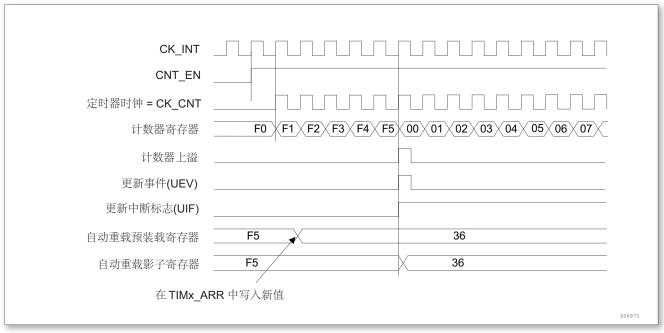


图 196. 计数器时序图, 当 ARPE = 1 时的更新事件 (TIMx_ARR 预装载)

19.3.3 重复计数器

'时基单元'解释了计数器上溢时是如何产生更新事件 (UEV) 的, 然而事实上它只能在重复 计数达到 0 的时候产生。这个特性对产生 PWM 信号非常有用。

这意味着在每 N 次计数上溢时,数据从预装载寄存器传输到影子寄存器 (TIMx_ARR 自动重载入寄存器,TIMx_PSC 预装载寄存器,还有在比较模式下的捕获/比较寄存器 TIMx_CCRx), N 是 TIMx_RCR 重复计数寄存器中的值。

重复计数器在下述任一条件成立时递减:

向上计数模式下每次计数器溢出时,重复计数器是自动加载的,重复速率是由 TIMx RCR

寄存器的值定义。当更新事件由软件产生 (通过设置 TIMx_EGR 中的 UG 位) 或者通过硬件的从模式控制器产生,则无论重复计数器的值是多少,立即发生更新事件,并且 TIMx_RCR 寄存器中的内容被重载入到重复计数器。

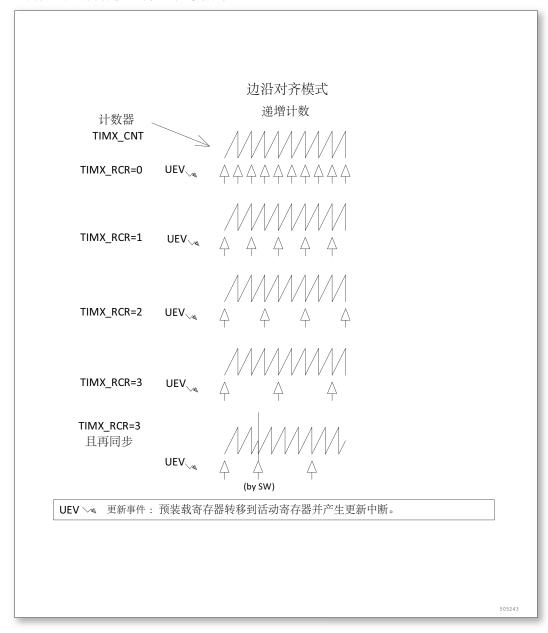


图 197. 不同模式及不同 TIMx_RCR 寄存器设置下更新速率的例子

19.3.4 时钟源

计数器时钟可由下列时钟源提供:

• 内部时钟 (CK_INT)。

内部时钟源 (CK_INT)

如果禁止了从模式控制器 (TIMx_SMCR 寄存器的 SMS = 000),则 CEN、DIR(TIMx_CR1 寄存器) 和 UG 位 (TIMx_EGR 寄存器) 是事实上的控制位,并且只能被软件修改 (UG 位仍被自动清除)。只要 CEN 位被写成'1',预分频器的时钟就由内部时钟 CK INT 提供。

下图显示了控制电路和向上计数器在一般模式下,不带预分频器时的操作。

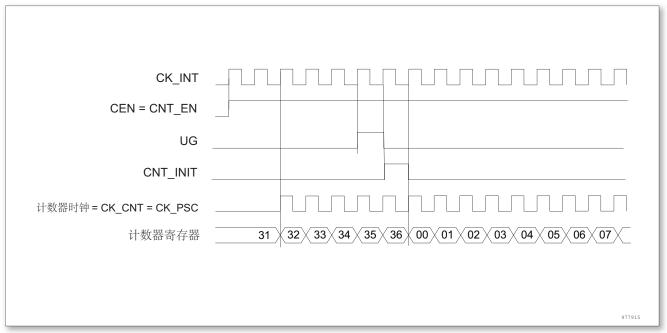


图 198. 一般模式下的控制电路,内部时钟分频因子为 1

19.3.5 捕获/比较通道

每一个捕获/比较通道都是围绕着一个捕获/比较寄存器 (包含影子寄存器),包括捕获的输入部分 (数字滤波、多路复用和预分频器),和输出部分 (比较器和输出控制)。下面几张图是一个捕获/比较通道概览。

输入部分对相应的 Tlx 输入信号采样,并产生一个滤波后的信号 TlxF。然后,一个带极性选择的边缘检测器产生一个信号 (TlxFPx),它可以作为从模式控制器的输入触发或者作为捕获控制。该信号通过预分频进入捕获寄存器 (ICxPS)。

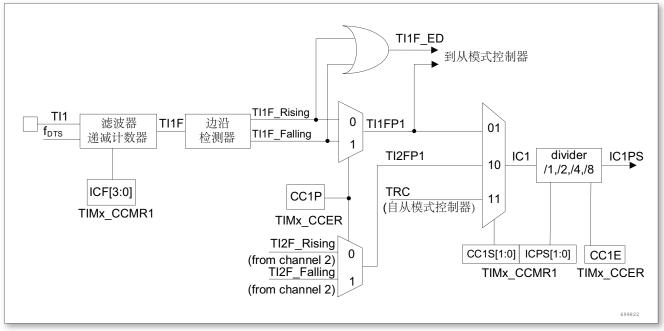


图 199. 捕获/比较通道如: (通道 1 输入部分)

输出部分产生一个中间波形 OCxREF(高有效) 作为基准,链的末端决定最终输出信号的极

性。

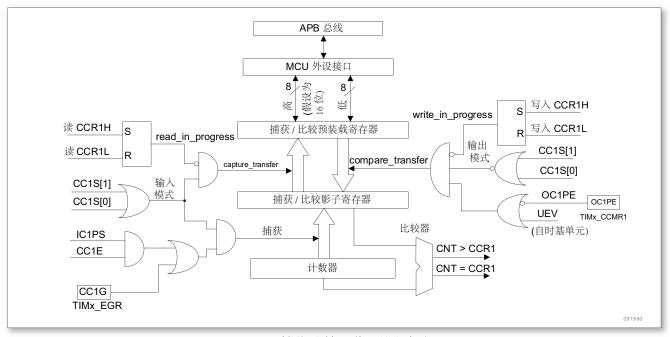


图 200. 捕获/比较通道 1 的主电路

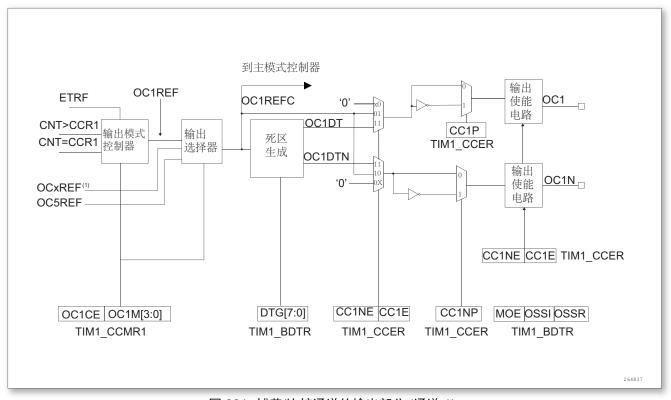


图 201. 捕获/比较通道的输出部分 (通道 1)

捕获 /比较模块由一个预装载寄存器和一个影子寄存器组成。读写过程仅操作预装载寄存器。在捕获模式下,捕获发生在影子寄存器上,然后再复制到预装载寄存器中。在比较模式下,预装载寄存器的内容被复制到影子寄存器中,然后影子寄存器的内容和计数器进行比较。

19.3.6 输入捕获模式

在输入捕获模式下,当检测到 ICx 信号上相应的边沿后,计数器的当前值被锁存到捕获/比较寄存器 (TIMx_CCRx) 中。当捕获事件发生时,相应的 CCxIF 标志 (TIMx_SR 寄存器)被置'1',如果使能了中断或者 DMA 操作,则将产生中断或者 DMA 操作。如果捕获事件发生时 CCxIF 标志已经为高,那么重复捕获标志 CCxOF(TIMx_SR 寄存器)被置'1'。写 CCxIF = 0 可清除 CCxIF,或读取存储在 TIMx_CCRx 寄存器中的捕获数据也可清除 CCxIF。写 CCxOF = 0 可清除 CCxOF。

以下例子说明如何在 TI1 输入的上升沿时捕获计数器的值到 TIMx_CCR1 寄存器中,步骤如下:

- 选择有效输入端: TIMx_CCR1 必须连接到 TI1 输入,所以写入 TIMx_CCMR1 寄存器中的 CC1S = 01,只要 CC1S 不为'00',通道被配置为输入,并且 TM1_CCR1 寄存器变为只读。
- 根据输入信号的特点,配置输入滤波器为所需的带宽(即输入为 Tlx 时,输入滤波器控制 位是 TIMx_CCMRx 寄存器中的 ICxF 位)。假设输入信号在最多 5 个内部时钟周期的时间内抖动,我们须配置滤波器的带宽长于 5 个时钟周期。因此我们可以(以 f_{DTS} 频率)连续采样 8 次,以确认在 Tl1 上一次真实的边沿变换,即在 TlMx_CCMR1 寄存器中写入 IC1F = 0011。
- 选择 TI1 通道的有效转换边沿,在 TIMx_CCER 寄存器中写入 CC1P = 0(本例中是上升 沿)。
- 配置输入预分频器。在本例中,我们希望捕获发生在每一个有效的电平转换时刻,因此 预分频器被禁止 (写 TIMx_CCMR1 寄存器的 IC1PS = 00)。
- 设置 TIMx CCER 寄存器的 CC1E = 1,允许捕获计数器的值到捕获寄存器中。
- 如果需要,通过设置 TIMx_DIER 寄存器中的 CC1IE 位允许相关中断请求,通过设置 TIMx_DIER 寄存器中的 CC1DE 位允许 DMA 请求。

当发生一个输入捕获时:

- 当产生有效的电平转换时,计数器的值被传送到 TIMx CCR1 寄存器。
- C1IF 标志被设置 (中断标志)。当发生至少 2 个连续的捕获时, 而 CC1IF 未曾被清除, CC1OF 也被置 1。
- · 如设置了 CC1IE 位,则会产生一个中断。
- 如设置了 CC1DE 位,则还会产生一个 DMA 请求。

为了处理捕获溢出,建议在读出捕获溢出标志之前读取数据,这是为了避免丢失在读出捕获溢出标志之后和读取数据之前可能产生的捕获溢出信息。

注:设置 TIMx_EGR 寄存器中相应的 CCxG 位,可以通过软件产生输入捕获中断和/或 DMA 请求。

19.3.7 强制输出模式

在输出模式 (TIMx_CCMRx 寄存器中 CCxS = 00) 下,输出比较信号 (OCxREF 和相应的 OCx/OCxN 由软件强置为有效或无效状态,而不依赖于输出比较寄存器和计数器间的比较 结果。

置 TIMx_CCMRx 寄存器中相应的 OCxM = 101,即可强置输出比较信号 (OCxREF/OCx)为有效状态。这样 OCxREF 被强置为高电平 (OCxREF 始终为高电平有效),同时 OCx 得到 CCxP 极性位相反的值。

例如: CCxP = 0(OCx 高电平有效),则 OCx 被强置为高电平。

置 TIMx CCMRx 寄存器中的 OCxM = 100,可强置 OCxREF 信号为低。

该模式下,在 TIMx_CCRx 影子寄存器和计数器之间的比较仍然在进行,相应的标志也会被修改。因此仍然会产生相应的中断和 DMA 请求。这将会在下面的输出比较模式一节中介绍。

19.3.8 输出比较模式

此项功能是用来控制一个输出波形或者指示何时一段给定的时间已经到时。

当计数器与捕获/比较寄存器的内容相同时,输出比较功能做如下操作:

- 将输出比较模式 (TIMx_CCMRx 寄存器中的 OCxM 位) 和输出极性 (TIMx_CCER 寄存器中的 CCxP 位) 定义的值输出到对应的管脚上。在比较匹配时,输出管脚可以保持它的电平 (OCxM = 000)、被设置成有效电平 (OCxM = 001)、被设置成无有效电平 (OCxM = 010) 或进行翻转 (OCxM = 011)。
- 设置中断状态寄存器中的标志位 (TIMx_SR 寄存器中的 CCxIF 位)。
- 若设置了相应的中断屏蔽 (TIMx DIER 寄存器中的 CCxIE 位),则产生一个中断。
- 若设置了相应的使能位 (TIMx_DIER 寄存器中的 CCxDE 位, TIMx_CR2 寄存器中的 CCDS 位选择 DMA 请求功能),则产生一个 DMA 请求。

TIMx_CCMRx 中的 OCxPE 位选择 TIMx_CCRx 寄存器是否需要使用预装载寄存器。在输出比较模式下,更新事件 UEV 对 OCxREF 和 OCx 输出没有影响。同步的精度可以达到计数器的一个计数周期。输出比较模式 (在单脉冲模式下) 也能用来输出一个单脉冲。

输出比较模式的配置步骤:

- 选择计数器时钟 (内部,外部,预分频器)
- 将相应的数据写入 TIMx ARR 和 TIMx CCRx 寄存器中
- 如果要产生一个中断请求,设置 CCxIE 位
- 选择输出模式:
 - 写 OCxM = '011', CNT 与 CCRx 匹配时翻转 OCx 的输出引脚
 - 写 OCxPE = '0', 预装载未用
 - 写 CCxP = '0', 高电平有效
 - 写 CCxE = '1', 开启 OCx 输出
- 设置 TIMx CR1 寄存器的 CEN 位启动计数器

TIMx_CCRx 寄存器能够在任何时候通过软件进行更新以控制输出波形,条件是未使用预装载寄存器 (OCxPE = '0',否则 TIMx_CCRx 的影子寄存器只能在发生下一次更新事件时被更新)。下图给出了一个例子。

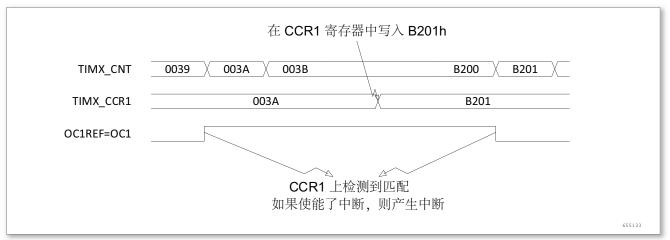


图 202. 输出比较模式, 翻转 OC1

19.3.9 PWM 模式

脉冲宽度调制模式可以产生一个由 TIMx_ARR 寄存器确定频率、由 TIMx_CCRx 寄存器确定与空比的信号。

在 TIMx_CCMRx 寄存器中的 OCxM 位写入'110'(PWM 模式 1)或'111'(PWM 模式 2),能够独立地设置每个 OCx 输出通道产生一路 PWM。必须通过设置 TIMx_CCMRx 寄存器的 OCxPE 位使能相应的预装载寄存器,最后还要设置 TIMx_CR1 寄存器的 ARPE 位,(在向上计数模式中)使能自动重装载的预装载寄存器。仅当发生一个更新事件的时候,预装载寄存器才能被传送到影子寄存器,因此在计数器开始计数之前,必须通过设置 TIMx_EGR寄存器中的 UG 位来初始化所有的寄存器。

OCx 的极性可以通过软件在 TIMx_CCER 寄存器中的 CCxP 位设置,它可以设置为高电平有效或低电平有效。TIMx_CCER 和 TIMx_BDTR 寄存器中的 CCxE、CCxNE、MOE、OSSI OSSR 位控制 OCx 输出使能。详见 TIMx_CCERx 寄存器的描述。

在 PWM 模式 (模式 1 或模式 2) 下, TIMx_CNT 和 TIMx_CCRx 始终在进行比较, (依据计数器的计数方向) 以确定是否符合 TIMx_CCRx ≤ TIMx_CNT 或者 TIMx_CNT ≤ TIMx_CCRx。根据 TIMx_CR1 寄存器中 CMS 位的状态,定时器能够产生边沿对齐的 PWM 信号或中央对齐的 PWM 信号。

PWM 边沿对齐模式

向上计数配置

当 TIMx_CR1 寄存器中的 DIR 位为低的时候执行向上计数。参看:向上计数模式下面是一个 PWM 模式 1 的例子。当 TIMx_CNT < TIMx_CCRx 时 PWM 信号参考 OCxRE 为高,否则为低。如果 TIMx_CCRx 中的比较值大于自动重装载值 (TIMx_ARR),则 OCxREF 保持为 '1'。如果比较值为 0,则 OCxREF 保持为 '0'。图 203为 TIMx_ARR = 8 时边沿对齐的 PWM 波形实例。

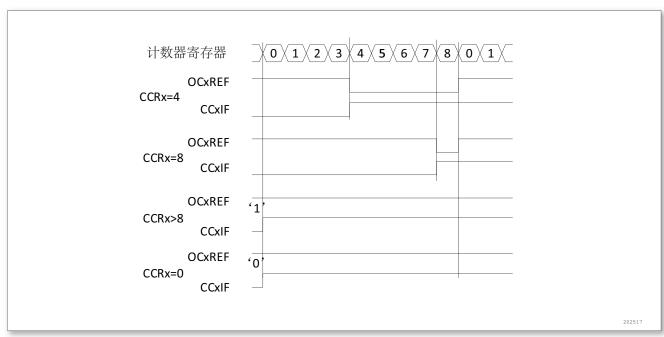


图 203. 边沿对齐的 PWM 波形 (ARR = 8)

19.3.10 互补输出和死区插入

基本定时器 TIM16/17 能够输出两路互补信号,并且能够管理输出的瞬时关断和接通。这段时间通常被称为死区,用户应该根据连接的输出器件和它们的特性 (电平转换的延时、电源开关的延时等)来调整死区时间。

配置 TIMx_CCER 寄存器中的 CCxP 和 CCxNP 位,可以为每一个输出独立地选择极性 (主输出 OCx 或互补输 OCxN)。

互补信号 OCx 和 OCxN 通过下列控制位的组合进行控制: TIMx_CCER 寄存器的 CCxE 和 CCxNE 位, TIMx_BDTR 和 TIMx_CR2 寄存器中的 MOE、OISx、OISxN、OSSI 和 OSSR 位,详见表 55: 带刹车功能的互补输出通道 OCx 和 OCxN 的控制位。特别的是,在转换到 IDLE 状态时 (MOE 下降到 0) 死区被激活。

同时设置 CCxE 和 CCxNE 位将插入死区,如果存在刹车电路,则还要设置 MOE 位。每一个通道都有一个 10 位的死区发生器。参考信号 OCxREF 可以产生 2 路输出 OCx 和 OCxN。如果 OCx 和 OCxN 为高有效:

- OCx 输出信号与参考信号相同,只是它的上升沿相对于参考信号的上升沿有一个延迟。
- OCxN 输出信号与参考信号相反,只是它的上升沿相对于参考信号的下降沿有一个延迟。

如果延迟大于当前有效的输出宽度 (OCx 或者 OCxN),则不会产生相应的脉冲。下列几张图显示了死区发生器的输出信号和当前参考信号 OCxREF 之间的关系。(假设 CCxP = 0、CCxNP = 0、MOE = 1、CCxE = 1 并且 CCxNE = 1)。

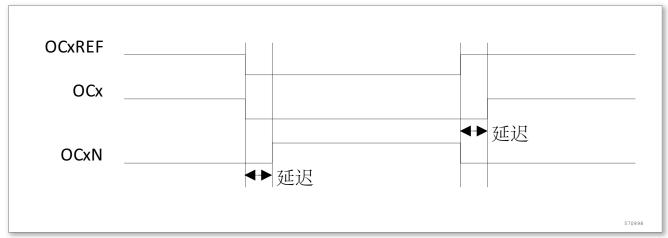


图 204. 带死区插入的互补输出

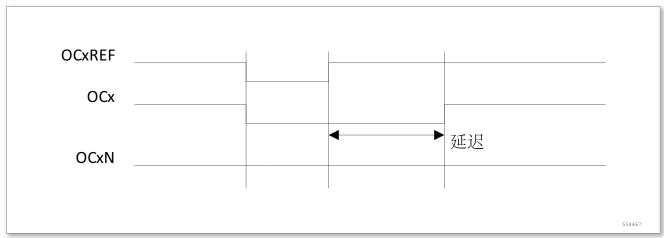


图 205. 死区波形延迟大于负脉冲

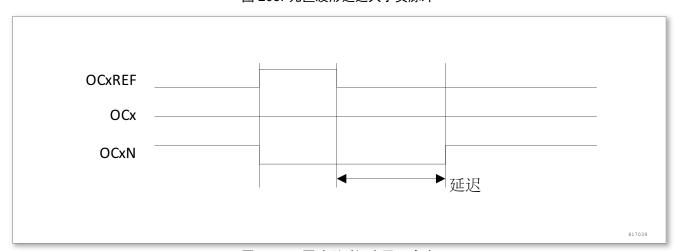


图 206. 死区波形延迟大于正脉冲

每一个通道的死区延时都是相同的,是由 TIMx_BDTR 寄存器中的 DTG 位编程配置。详见小节 19.4.13 TIM16/17 刹车和死区寄存器 (TIMx_BDTR) 中的延时计算。

重定向 OCxREF 到 OCx 或 OCxN 在输出模式下 (强置、输出比较或 PWM),通过配置 TIMx_CCER 寄存器的 CCxE 和 CCxNE 位,OCxREF 可以被重定向到 OCx 或者 OCxN的输出。

这个功能可以在互补输出处于无效电平时,在某个输出上送出一个特殊的波形 (例如 PWM

或者静态有效电平)。另一个作用是,让两个输出同时处于无效电平,或处于有效电平和带死区的互补输出。

注: 当只使能 OCxN(CCxE = 0, CCxNE = 1) 时,它不会反相,当 OCxREF 变高时立即有效。例如,如果 CCxNP = 0,则 OCxN = OCxREF。另一方面,当 OCx 和 OCxN 都被使能时 (CCxE = CCxNE = 1),当 OCxREF 为高时 OCx 有效;而 OCxN 相反,当 OCxREF 低时 OCxN 变为有效。

19.3.11 使用刹车功能

当使用刹车功能时,依据相应的控制位 (TIMx_BDTR 寄存器中的 MOE/OSSI 和 OSSR 位,TIMx_CR2 寄存器中的 OISx 和 OISxN 位),输出使能信号和无效电平都会被修改。但无论何时,OCx 和 OCxN 输出不能在同一时间同时处于有效电平上。详见表 55带刹车功能的互补输出通道 OCx 和 OCxN 的控制位。刹车源既可以是刹车输入引脚又可以是一个时钟失败事件。时钟失败事件由复位时钟控制器中的时钟安全系统 (CSS) 产生,详见时钟安全系统章节。系统复位后,刹车电路被禁止,MOE 位为低。设置 TIMx_BDTR 寄存器中的BKE 位可以使能刹车功能,刹车输入信号的极性可以通过配置同一个寄存器中的 BKP 位选择。BKE 和 BKP 可以同时被修改。当写入 BKE 和 BKP 位时,在真正写入之前会有 1个 APB 时钟周期的延迟,因此需要等待一个 APB 时钟周期之后,才能正确地读回写入的位。

因为 MOE 下降沿可以是异步的,在实际信号 (作用在输出端) 和同步控制位 (在 TIMx_BDTR 寄存器中) 之间设置了一个再同步电路。这个再同步电路会在异步信号和同步信号之间产生延迟。特别的,如果当它为低时写 MOE = 1,则读出它之前必须先插入一个延时 (空指令) 才能读到正确的值。这是因为写入的是异步信号而读的是同步信号。

当发生刹车时 (在刹车输入端出现选定的电平),有下述动作:

- MOE 位被异步地清除,将输出置于无效状态、空闲状态或者复位状态 (由 OSSI 位选择)。 这个特性在 MCU 的振荡器关闭时依然有效。
- 当 MOE = 0 时,每一个输出通道输出的电平由 TIMx_CR2 寄存器中的 OISx 位决定。如果 OSSI = 0,则定时器释放使能输出,否则使能输出始终为高。
- 当使用互补输出时:
 - 输出首先被置于复位状态即无效的状态 (取决于极性)。这是异步操作,即使定时器没有时钟时,此功能也有效。
 - 如果定时器的时钟依然存在,死区生成器将会重新生效,在死区之后根据 OISx 和 OISxN 位指示的电平驱动输出端口。即使在这种情况下,OCx 和 OCxN 也不能被同时驱动到有效的电平。注:因为重新同步 MOE,死区时间比通常情况下长一些(大约2个ck tim 的时钟周期)。
 - 如果 OSSI = 0,定时器释放使能输出,否则保持使能输出;或当 CCxE 与 CCxNE 之一变高时,使能输出变为高。
- 如果设置了 TIMx_DIER 寄存器中的 BIE 位,当刹车状态标志 (TIMx_SR 寄存器中的 BIF 位) 为 '1'时,则产生一个中断。如果设置了 TIMx_DIER 寄存器中的 BDE 位,则产生一个 DMA 请求。
- 如果设置了 TIMx_BDTR 寄存器中的 AOE 位,在下一个更新事件 UEV 时 MOE 位被自动置位;例如,这可以用来进行整形。否则,MOE 始终保持低直到被再次置'1';此时,这个特性可以被用在安全方面,你可以把刹车输入连到电源驱动的报警输出、热敏传感器或者其他安全器件上。

注: 刹车输入为电平有效。所以, 当刹车输入有效时, 不能同时 (自动地或者通过软件) 设置 MOE。同时, 状态标志 BIF 不能被清除。

刹车由 BRK 输入产生,它的有效极性是可编程的,且由 TIMx_BDTR 寄存器中的 BKE 位开启。

除了刹车输入和输出管理,刹车电路中还实现了写保护以保证应用程序的安全。它允许用户冻结几个配置参数 (死区长度,OCx/OCxN 极性和被禁止的状态,OCxM 配置,刹车使能和极性)。用户可以通过 TIMx_BDTR 寄存器中的 LOCK 位,从三级保护中选择一种,参看小节 19.4.13刹车和死区寄存器 (TIM16/17_BDTR)。在 MCU 复位后 LOCK 位只能被修改一次。

下图显示响应刹车的输出实例:

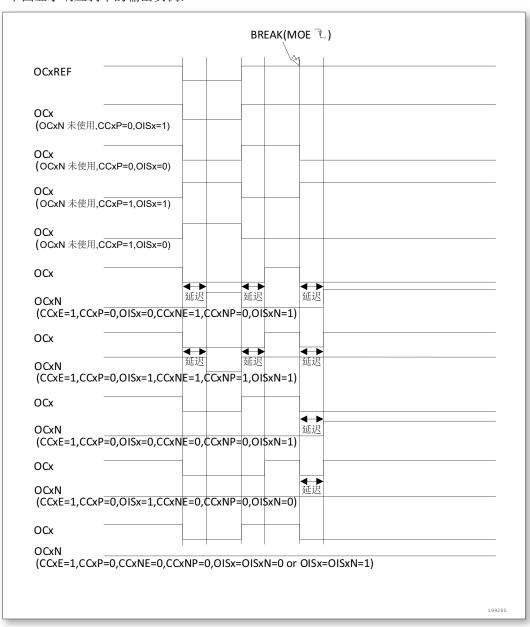


图 207. 响应刹车的输出

19.3.12 单脉冲模式

单脉冲模式 (OPM) 是前述众多模式的一个特例。这种模式允许计数器响应一个激励,并在一个程序可控的延时之后,产生一个脉宽可程序控制的脉冲。可以通过从模式控制器启动计数器,在输出比较模式或者 PWM 模式下产生波形。设置 TIMx_CR1 寄存器中的 OPM 位将选择单脉冲模式,这样可以让计数器自动地在产生下一个更新事件 UEV 时停止。

仅当比较值与计数器的初始值不同时,才能产生一个脉冲。启动之前(当定时器正在等待触发),必须如下配置:

• 向上计数方式: CNT < CCRx ≤ ARR(特别地, 0 < CCRx)

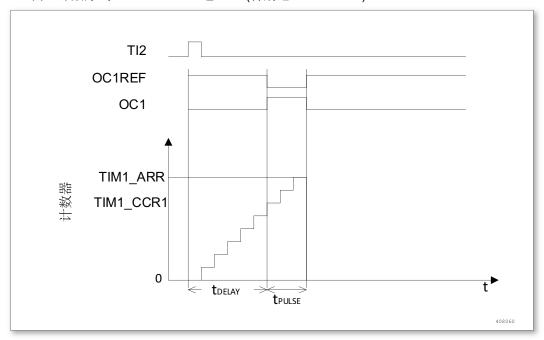


图 208. 单脉冲模式的例子

例如,你需要在从 TI2 输入脚上检测到一个上升沿开始,延迟 t_{DELAY} 之后,在 OC1 上产生一个长度为 t_{PULSE} 的正脉冲。

假定 TI2FP2 作为触发 1:

- 置 TIMx CCMR1 寄存器中的 CC2S = '01', 把 TI2FP2 映像到 TI2。
- 置 TIMx_CCER 寄存器中的 CC2P = '0', 使 TI2FP2 能够检测上升沿。
- 置 TIMx_SMCR 寄存器中的 TS = '110', TI2FP2 作为从模式控制器的触发 (TRGI)。
- 置 TIMx SMCR 寄存器中的 SMS = '110' (触发模式), TI2FP2 被用来启动计数器。
- OPM 波形由写入比较寄存器的数值决定 (要考虑时钟频率和计数器预分频器)
- t_{DFLAY} 由写入 TIMx CCR1 寄存器中的值定义。
- t_{PULSE} 由自动装载值和比较值之间的差值定义 (TIMx_ARR TIMx_CCR1)。
- 假定当发生比较匹配时要产生从'0'到'1'的波形,当计数器到达预装载值时要产生一个从'1'到'0'的波形;首先要置 TIMx_CCMR1 寄存器的 OC1M = '111',进入 PWM 模式 2;根据需要有选择地使能预装载寄存器:置 TIMx_CCMR1 中的 OC1PE = '1'和 TIMx_CR1 寄存器中的 ARPE;然后在 TIMx_CCR1 寄存器中填写比较值,在 TIMx_ARR 寄存器中填写自动装载值,修改 UG 位来产生一个更新事件,然后等待在 TI2 上的一个外部触发事件。本例中, CC1P = '0'。

在这个例子中,TIMx_CR1 寄存器中的 DIR 和 CMS 位应该置低。因为只需一个脉冲,所

以必须设置 TIMx_CR1 寄存器中的 OPM = '1',在下一个更新事件 (当计数器从自动装载值翻转到 0) 时停止计数。设置 TIMx_CR1 寄存器中的 OPM = '0',就会选择重复模式。

19.3.13 调试模式

当微控制器进入调试模式时 (Cortex®-M0 核停止),根据 DBG 模块中 DBG_TIMx_STOP 的设置,TIMx 计数器可以或者继续正常操作,或者停止。

19.4 寄存器描述

表 54. TIM16/17 寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	TIM16/17_CR1	TIM16/17 控制寄存器 1	0x00000000	小节 19.4.1
0x04	TIM16/17_CR2	TIM16/17 控制寄存器 2	0x00000000	小节 19.4.2
0x0C	TIM16/17_DIER	TIM16/17 中断允许寄存器	0x00000000	小节 19.4.3
0x10	TIM16/17_SR	TIM16/17 状态寄存器	0x00000000	小节 19.4.4
0x14	TIM16/17_EGR	TIM16/17 事件产生寄存器 1	0x00000000	小节 19.4.5
0x18	TIM16/17_CCMR1	TIM16/17 捕获/比较模式寄存器 1	0x00000000	小节 19.4.6
0x20	TIM16/17_CCER	TIM16/17 捕获/比较使能寄存器	0x00000000	小节 19.4.7
0x24	TIM16/17_CNT	TIM16/17 计数器	0x00000000	小节 19.4.8
0x28	TIM16/17_PSC	TIM16/17 预分频寄存器	0x00000000	小节 19.4.9
0x2C	TIM16/17_ARR	TIM16/17 自动重装寄存器	0x00000000	小节 19.4.10
0x30	TIM16/17_RCR	TIM16/17 重复计数寄存器	0x00000000	小节 19.4.11
0x34	TIM16/17_CCR1	TIM16/17 捕获/比较寄存器 1	0x00000000	小节 19.4.12
0x44	TIM16/17_BDTR	TIM16/17 刹车与死区时间寄存器	0x00000000	小节 19.4.13
0x48	TIM16/17_DCR	TIM16/17 DMA 控制寄存器	0x00000000	小节 19.4.14
0x4C	TIM16/17_DMAR	TIM16/17 全传输地址寄存器	0x00000000	小节 19.4.15

19.4.1 TIM16/17 控制寄存器 1(TIM16/17_CR1)

偏移地址: 0x00 复位值: 0x0000

Bit	Field	Туре	Reset	Description
15: 10	Reserved			保留, 读为 0

Bit	Field	Туре	Reset	Description
9: 8	CKD	rw	0x00	时钟分频因子 (Clock division) 定义在定时器时钟 (CK_INT) 频率与数字滤波器 (ETR,Tlx) 使用的采样频率之间的分频比例。 00: t _{DTS} = t _{CK_INT} 01: t _{DTS} = 2 x t _{CK_INT} 10: t _{DTS} = 4 x t _{CK_INT} 11: 保留
7	ARPE	rw	0x00	自动重装载预装载允许位 (Auto-reload preload enable) 0: TIMx_ARR 寄存器没有缓冲 1: TIMx_ARR 寄存器缓冲器有效
6: 4	Reserved			保留,始终读为0。
3	ОРМ	rw	0x00	单脉冲模式 (One pulse mode) 0: 在发生更新事件时,计数器不停止 1: 在发生下一次更新事件 (清除 CEN 位) 时,计数器停止
2	URS	rw	0x00	更新请求源 (Update request source) 软件通过该位选择 UEV 事件的源。 0: 如果允许产生更新中断或 DMA 请求,则下述任一事件 产生一个更新中断或 DMA 请求: - 计数器溢出/下溢 - 设置 UG 位 - 从模式控制器产生的更新 1: 如果使能了更新中断或 DMA 请求,则只有计数器溢出/下溢才产生更新中断或 DMA 请求。
1	UDIS	rw	0x00	禁止更新 (Update disable) 软件通过该位允许/禁止 UEV事件的产生 0: 允许 UEV。更新 (UEV)事件由下述任一事件产生: - 计数器溢出/下溢 - 设置 UG 位 - 从模式控制器产生的更新具有缓存的寄存器被装入它们的预装载值。 1: 禁止 UEV。不产生更新事件,影子寄存器 (ARR、PSC、CCRx) 保持它们的值。如果设置了 UG 位或从模式控制器发出了一个硬件复位,则计数器和预分频器被重新初始化
0	CEN	rw	0x00	允许计数器 (Counter enable) 0: 禁止计数器 1: 使能计数器。 在单脉冲模式下,当发生更新事件时,CEN 被自动清除。 注: 在软件设置了CEN 位后,外部时钟、门控模式和编码器模式才能工作。触发模式可以自动地通过硬件设置CEN 位。

19.4.2 TIM16/17 控制寄存器 2(TIM16/17_CR2)

偏移地址: 0x04

复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Re	served			OIS1N	OIS1		Res	served		CCDS	ccus	Res.	ССРС
						rw	rw					rw	rw		rw

	Field	Туре	Reset	Description
15:10 F	Reserved			保留, 读为 0
9 C	DIS1N	rw	0x00	输出空闲状态 1(OC1N 输出)(Output Idle state 1)
				0: 当 MOE = 0 时,死区后 OC1N = 0
				1: 当 MOE = 1 时,死区后 OC1N = 1
				注:已经设置了LOCK(TIMx_BKR寄存器)级别1、2或3后,该
				位不能被修改。
8 C	DIS1	rw	0x00	输出空闲状态 1(OC1 输出)(Output Idle state 1)
				0: 当 MOE = 0 时,如果实现了 OC1N,则死区后 OC1 = 0
				1: 当 MOE = 1 时,如果实现了 OC1N,则死区后 OC1 =
				1.
				注: 已经设置了 LOCK(TIMx_BKR 寄存器) 级别 1、2 或 3 后, 该
				位不能被修改。
	Reserved			保留, 读为 0
3 C	CCDS	rw	0x00	捕获/比较的 DMA 选择 (Capture/compare DMA selection)
				0: 当发生 CCx 事件时,送出 CCx 的 DMA 请求
0	20110		000	1: 当发生更新事件时,送出 CCx 的 DMA 请求
2 C	CCUS	rw	0x00	捕获/比较控制更新选择 (Capture/compare control update
				selection)
				0: 当捕获/比较控制位被预装载时 (CCPC = 1), 只有通过 设置 COMG 位才会被更新
				1: 当捕获/比较控制位被预装载时 (CCPC = 1), 在设置
				COMG 位或在 TRGI 上产生上升沿时都会被更新
				注: 此位仅当通道有互补输出时才起作用。
1 F	Reserved			保留, 读为 0
	CCPC	rw	0x00	捕获/比较预装载控制位 (Capture/compare preloaded con-
				trol)
				0: CCxE, CCxNE 和 OCxM 位不进行预装载的
				1: CCxE, CCxNE 和 OCxM 位在被写入后被预装载,只
				有在 COM 位被设置为'1'时才更新
				注:此位仅当通道有互补输出时才起作用。

19.4.3 TIM16/17 中断允许寄存器 (TIM16/17_DIER)

偏移地址: 0x0C 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Res	served			CC1 DE	UDE	BIE	Res.	COM IE	Re	eserved		CC1 IE	UIE
						rw	rw	rw		rw				rw	rw

Bit	Field	Туре	Reset	Description
15: 10	Reserved			保留, 读为 0
9	CC1DE	rw	0x00	允许捕获/比较 1 的 DMA 请求
				0: CC1 DMA 请求禁止
				1: CC1 DMA 请求允许
8	UDE	rw	0x00	更新 DMA 请求允许
				0: 更新 DMA 请求禁止
				1: 更新 DMA 请求允许
7	BIE	rw	0x00	刹车中断允许
				0: 刹车中断禁止
				1: 刹车中断允许
6	Reserved			保留,读为0
5	COMIE	rw	0x00	COM 中断允许
				0: COM 中断禁止
				1: COM 中断允许
4: 2	Reserved			保留,读为0
1	CC1IE	rw	0x00	捕获/比较 1 中断允许
				0: CC1 中断禁止
				1: CC1 中断允许
0	UIE	rw	0x00	更新中断允许
				0: 更新中断禁止
				1: 更新中断允许

19.4.4 TIM16/17 状态寄存器 (TIM16/17_SR)

偏移地址: 0x10

复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Res	erved			CC1 OF	Res.	BIF	TIF	COM IF	R	Reserve	ed	CC1 IF	UIF

Bit	Field	Type	Reset	Description
15: 10	Reserved			保留, 读为 0

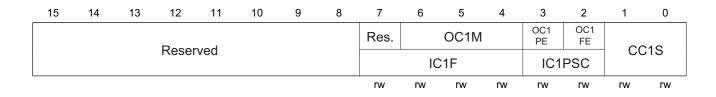
Bit	Field	Туре	Reset	Description
9	CC10F	rc_w0	0x00	捕获/比较 1 重复捕获标记 (Capture/Compare 1 overcapture flag) 仅当相应的通道被配置为输入捕获时,该标记可由硬件置 1。写 0 可清除该位。 0: 无重复捕获产生; 1: 计数器的值被捕获到 TIMx_CCR1 寄存器时, CC1IF 的 状态已经为 1。
8	Reserved			保留,读为0
7	BIF	rc_w0	0x00	刹车中断标记 (Break interrupt flag) 当刹车输入有效,硬件对该位置'1'。如果刹车输入无效, 则该位可由软件清"0" 0: 无刹车事件产生 1: 刹车输入上检测到有效电平
6	TIF	rc_w0	0x00	触发器中断标记 (Trigger interrupt flag) 当发生触发事件 (当从模式控制器处于除门控模式外的其 它模式时,在 TRGI 输入端检测到有效边沿,或门控模式 下的任一边沿)时由硬件对该位置'1'。它由软件清'0'。 0: 无触发器事件产生; 1: 触发器中断等待响应。
5	COMIF	rc_w0	0x00	COM 中断标记 (COM interrupt flag) 当产生 COM 事件 (当捕获/比较控制位: CCxE、CCxNE、 OCxM 已被更新) 时,该位由硬件置 1。它由软件清 0。 0: 无 COM 事件产生 1: COM 中断等待响应
4: 2	Reserved			保留, 读为 0
1	CC1IF	rc_w0	0x00	捕获/比较 1 中断标记 (Capture/Compare 1 interrupt flag) 如果通道 CC1 配置为输出模式: 当计数器值与比较值匹配时该位由硬件置'1',它由软件清'0'。 0: 无匹配发生 1: TIMx_CNT 的值与 TIMx_CCR1 的值匹配当 TIMx_CCR1 的内容大于 TIMx_ARR 时,在计数器溢出时 CC1IF 位变高。如果通道 CC1 配置为输入模式:当捕获事件发生时该位由硬件置'1',它由软件清'0'或通过读 TIMx_CCR1 清'0'。 0: 无输入捕获产生 1: 计数器值已被捕获 (拷贝) 至 TIMx_CCR1(在 IC1 上检测到与所选极性相同的边沿)

Bit	Field	Туре	Reset	Description
0	UIF	rc_w0	0x00	更新中断标记 (Update interrupt flag)
				当产生更新事件时该位由硬件置'1'。它由软件清'0'。
				0: 无更新事件产生
				1:更新中断等待响应。当寄存器被更新时该位由硬件置'1':
				- 若 TIMx_CR1 寄存器的 UDIS = 0,当对应的重复计数器
				的值溢出 (更新如果重复计数器 = 0) 时产生更新事件;
				- 若 TIMx_CR1 寄存器的 UDIS = 0、URS = 0,当通过软
				件对 TIMx_EGR 寄存器的 UG 对计数器 CNT 重新初始化
				时产生更新事件;
				- 若 TIMx_CR1 寄存器的 UDIS = 0、URS = 0,当计数器
				CNT 被触发事件重初始化时产生。

19.4.5 TIM16/17 事件产生寄存器 1(TIM16/17_EGR)

偏移地址: 0x14 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Res	served				BG	TG	COMG	F	Reserve	d	CC1G	UG
								W	w	w				w	W


Bit	Field	Туре	Reset	Description
15: 8	Reserved			保留,读为0
7	BG	W	0x00	产生刹车事件 (Break generation) 该位由软件置 '1',用于产生一个刹车事件,由硬件自动清 '0'。 0: 无动作 1: 刹车事件产生,清除 MOET,设置 TIMx_SR 寄存器的 TIF = 1,若开启对应的中断和 DMA,则产生相应的中断和 DMA。
6	TG	W	0x00	产生触发事件 (Trigger generation) 该位由软件置'1',用于产生一个触发事件,由硬件自动清'0'。 0:无动作; 1: TIMx_SR 寄存器的 TIF=1,若开启对应的中断和 DMA,则产生相应的中断和 DMA。
5	COMG	W	0x00	捕获/比较控制更新产生 (Capture/Compare control update generation) 该位由软件置'1',由硬件自动清'0'。 0: 无动作 1: 当 CCPC 位被设置时,才可能更新 CCxE,CCxNE 和 OCxM 位 注: 此位仅当通道有互补输出时才起作用。

Bit	Field	Туре	Reset	Description
4:2	Reserved			保留,读为0
1	CC1G	W	0x00	捕获/比较 1 产生
				该位由软件置'1',用于产生一个捕获/比较事件,由硬件
				自动清'0'。
				0: 无动作
				1: 在通道 CC1 上产生一个捕获/比较事件
				若通道 CC1 配置为输出:设置 CC1IF = 1,若开启对应的
				中断和 DMA,则产生相应的中断和 DMA。若通道 CC1 配
				置为输入,当前的计数器值捕获至 TIMx_CCR1 寄存器;设
				置 CC1IF = 1,若开启对应的中断和 DMA,则产生相应的
				中断和 DMA。若 CC1IF 已经为 1,则设置 CC1OF = 1。
0	UG	W	0x00	产生更新事件 (Update generation)
				该位由软件置'1',由硬件自动清'0'。
				0: 无动作
				1: 重新初始化计数器,并产生一个更新事件。注意预分频
				器的计数器也被清'0'(但是预分频系数不变)。

19.4.6 TIM16/17 捕获/比较模式寄存器 1(TIM16/17_CCMR1)

偏移地址: 0x18 复位值: 0x0000

通道可用于输入 (捕获模式) 或输出 (比较模式),通道的方向由相应的 CCxS 定义。该寄存器其他位的作用和输出模式下不同。OCxx 描述了通道在输出模式下的功能,ICxx 描述了通道在输出模式下的功能。因此必须注意,同一个位在输出模式和输入模式下的功能是不同的。

输出比较模式:

Bit	Field	Type	Reset	Description
15: 7	Reserved			保留,始终读为0。

Bit	Field	Туре	Reset	Description
6: 4	OC1M	rW	0x00	输出比较 1 模式 (Output compare 1 mode) 该 3 位定义了输出参考信号 OC1REF 的动作,而 OC1REF 决定了 OC1和 OC1N的值。 OC1REF 是高电平有效,而 OC1和 OC1N的有效电平取决于 CC1P和 CC1PN位。 000: 冻结。输出比较寄存器 TIMx_CCR1 与计数器 TIMx_CNT 间的比较对 OC1REF 不起作用;(此模式仅用于产生时基)。 001: 匹配时设置通道 1 为有效电平。当计数器 TIMx_CNT的值与捕获/比较寄存器 1(TIMx_CCR1)相同时,强制OC1REF 为高。 010: 匹配时设置通道 1 为无效电平。当计数器 TIMx_CNT的值与捕获/比较寄存器 1(TIMx_CCR1)相同时,强制OC1REF 为低。 011: 翻转。当 TIMx_CCR1 = TIMx_CNT时,翻转 OC1REF的电平。 100: 强制为无效电平。强制 OC1REF 为低。 101: 强制为有效电平。强制 OC1REF 为高。 110: PWM 模式 1,当 TIMx_CNT < TIMx_CCR1 时通道 1为有效电平,否则为无效电平 111: PWM 模式 2,当 TIMx_CNT < TIMx_CCR1 时通道 1为无效电平,否则为无效电平。注:当 LOCK 级别设为 3(TIMx_BDTR 寄存器中的 LOCK 位)并且 CC1S = '00'(该通道配置成输出)时,该位不能被修改。注:在 PWM 模式 1或 PWM 模式 2中,只有当比较结果改变了或在输出比较模式中从冻结模式切换到 PWM 模式时,OC1REF电平才改变。
3	OC1PE	rw	0x00	输出比较 1 预装载使能 (Output compare 1 preload enable) 0: 禁止 TIMx_CCR1 寄存器的预装载功能,可随时写入 TIMx_CCR1 寄存器,并且新写入的数值立即起作用。 1: 开启 TIMx_CCR1 寄存器的预装载功能,读写操作仅对 预装载寄存器操作,TIMx_CCR1 的预装载值在更新事件到 来时被传送至当前寄存器中。 注 1: 当 LOCK 级别设为 3(TIMx_BDTR 寄存器中的 LOCK 位) 并且 CC1S = '00'(该通道配置成输出)时,该位不能被修改。 注 2: 仅在单脉冲模式下 (TIMx_CR1 寄存器的 OPM = '1'),可 以在未确认预装载寄存器情况下使用 PWM 模式,否则其动作不确定。

Bit	Field	Туре	Reset	Description
2	OC1FE	rw	0x00	输出比较 1 快速使能 (Output compare 1 fast enable)
				该位用于加快 CC 输出对触发输入事件的响应。
				0: 根据计数器与 CCR1 的值, CC1 正常操作,即使触发
				器是打开的。当触发器的输入有一个有效沿时,激活 CC1
				输出的最小延时为5个时钟周期。
				1:输入到触发器的有效沿的作用就象发生了一次比较匹配。
				因此,OC被设置为比较电平而与比较结果无关。采样触发
				器的有效沿和 CC1 输出间的延时被缩短为 3 个时钟周期。
				OCFE 只在通道被配置成 PWM1 或 PWM2 模式时起作用。
1: 0	CC1S	rw	0x00	捕获/比较 1 选择 (Capture/Compare 1 selection)
				这 2 位定义通道的方向 (输入/输出),及输入脚的选择:
				00: CC1 通道被配置为输出;
				01: CC1 通道被配置为输入,IC1 映射在 TI1 上;
				10: CC1 通道被配置为输入,IC1 映射在 TI2 上;
				11: CC1 通道被配置为输入,IC1 映射在 TRC 上。此模式
				仅工作在内部触发器输入被选中时 (由 TIMx_SMCR 寄存
				器的 TS 位选择)。
				注: CC1S 仅在通道关闭时 (TIMx_CCER 寄存器的 CC1E = '0'
)才是可写的。

输入捕获模式:

Bit	Field	Type	Reset	Description
15: 8	Reserved			保留,始终读为0。

Bit	Field	Туре	Reset	Description
7: 4	IC1F	ΓW	0x00	输入捕获 1 滤波器 (Input capture 1 ?lter) 这几位定义了 TI1 输入的采样频率及数字滤波器长度。数字滤波器由一个事件计数器组成,它记录到 N 个事件后会产生一个输出的跳变: 0000: 无滤波器,以 f _{DTS} 采样 0001: 采样频率 f _{SAMPLING} = f _{CK_INT} , N = 2 0010: 采样频率 f _{SAMPLING} = f _{CK_INT} , N = 4 0011: 采样频率 f _{SAMPLING} = f _{CK_INT} , N = 8 0100: 采样频率 f _{SAMPLING} = f _{DTS} , N = 6 0101: 采样频率 f _{SAMPLING} = f _{DTS} , N = 6 0110: 采样频率 f _{SAMPLING} = f _{DTS} , N = 6 0111: 采样频率 f _{SAMPLING} = f _{DTS} /4, N = 8 1000: 采样频率 f _{SAMPLING} = f _{DTS} /8, N = 6 1001: 采样频率 f _{SAMPLING} = f _{DTS} /16, N = 5 1011: 采样频率 f _{SAMPLING} = f _{DTS} /16, N = 6 1100: 采样频率 f _{SAMPLING} = f _{DTS} /16, N = 6 1101: 采样频率 f _{SAMPLING} = f _{DTS} /16, N = 8 1101: 采样频率 f _{SAMPLING} = f _{DTS} /32, N = 5 1110: 采样频率 f _{SAMPLING} = f _{DTS} /32, N = 6 1111: 采样频率 f _{SAMPLING} = f _{DTS} /32, N = 6
3: 2	IC1PSC	rw	0x00	输入捕获 1 预分频 (Input capture 1 prescaler) 这 2 位定义了 CC1 输入 (IC1) 的预分频系数。当 CC1E = '0' (TIMx_CCER 寄存器中) 时,预分频器复位。 00: 无预分频器,捕获输入口上检测到的每一个边沿都触发一次捕获 01: 每 2 个事件触发一次捕获 10: 每 4 个事件触发一次捕获 11: 每 8 个事件触发一次捕获
1: 0	CC1S	rw	0x00	捕获/比较 1 选择这 2 位定义通道的方向 (输入/输出),及输入脚的选择: 00: CC1 通道被配置为输出; 01: CC1 通道被配置为输入, IC1 映射在 TI1 上; 10: CC1 通道被配置为输入, IC1 映射在 TI2 上; 11: CC1 通道被配置为输入, IC1 映射在 TRC 上。此模式仅工作在内部触发器输入被选中时(由 TIMx_SMCR 寄存器的 TS 位选择)。 注: CC1S 仅在通道关闭时(TIMx_CCER 寄存器的 CC1E = '0') 才是可写的。

19.4.7 TIM16/17 捕获/比较使能寄存器 (TIM16/17_CCER)

偏移地址: 0x20 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved								CC1 NP	CC1 NE	CC1P	CC1E			
												rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
15: 4	Reserved			保留,始终读为0。
3	CC1NP	rw	0x00	捕获/比较 1 输出极性 (Capture/Compare 1 complementary output Polarity) 0: OC1N 高有效 1: OC1N 低有效
2	CC1NE	rw	0x00	捕获/比较 1 互补输出使能 (Capture/Compare 1 complementary output enable) 0: 关闭- OC1N 无效 1: 开启- OC1N 输出到相关输出引脚的信号取决于 MOE, OSSI, OSSR, OIS1, OIS1 和 CC1E 位
1	CC1P	rw	0x00	捕获/比较 1 输出极性 通道 CC1 配置为输出: 0: OC1 高有效 1: OC1 低有效 CC1 通道配置为输入: CC1NP/CC1P 共同选择是 IC1 还是 IC1 的反相信号作为 触发或捕获信号 00: 不反相: 捕获发生在 IC1 的上升沿; 当用作外部触发 器时, IC1 不反相 01: 反相: 捕获发生在 IC1 的下降沿; 当用作外部触发器 时, IC1 反相 10: 保留 11: 同时捕获双沿
0	CC1E	rw	0x00	捕获/比较 1 输出使能 (Capture/Compare 1 output enable) CC1 通道配置为输出: 0: 关闭一 OC1 禁止输出 1: 开启一输出到对应的输出引脚的 OC1 信号取决于 MOE,OSSI,OSSR,OIS1,OIS1N 和 CC1E 位CC1 通道配置为输入:该位决定了计数器的值是否能捕获入 TIMx_CCR1 寄存器。0: 捕获禁止 1: 捕获使能

表 55. 带刹车功能的互补输出通道 OCx 和 OCxN 的控制位

控制位					输出状态 ⁽¹⁾	
MOE 位	OSSI	OSSR	CCxE	CCxNE	OCx 输出状态	OCxN 输出状态
	位	位	位	位		
		0	0	0	输出禁止 (与定时器断开)	输出禁止 (与定时器断开)
					OCx = 0, OCx_EN = 0	OCxN = 0, OCxN_EN = 0
		0	0	1	输出禁止 (与定时器断开)	OCxREF + 极性,
					OCx = 0, OCx_EN = 0	OCxN = OCxREF xor CCxNP,
						OCxN_EN = 1
		0	1	0	OCxREF + 极性,	输出禁止 (与定时器断开)
					OCx = OCxREF xor CCxP,	OCxN = 0, OCxN_EN = 0
					OCx_EN = 1	
		0	1	1	OCxREF + 极性 + 死区,	OCxREF 反相 + 极性 + 死区,
1	Χ				OCx_EN=1	OCxN_EN = 1
		1	0	0	输出禁止 (与定时器断开)	输出禁止 (与定时器断开) OCxN =
					$OCx = CCxP, OCx_EN = 0$	CCxNP, OCxN_EN = 0
		1	0	1	关闭状态 (输出使能且为无效电	OCxREF + 极性,
					平)	OCxN = OCxREF xor CCxNP,
					OCx = CCxP, OCx_EN = 1	OCxN_EN = 1
		1	1	0	OCxREF + 极性,	关闭状态 (输出使能且为无效电
					OCx = OCxREF xor CCxP,	平)
					OCx_EN = 1	OCxN = CCxNP, OCxN_EN = 1
		1	1	1	OCxREF + 极性 + 死区,	OCxREF 反相 + 极性 + 死区,
					OCx_EN = 1	OCxN_EN = 1
	0		0	0	输出禁止 (与定时器断开)	
	0		0	1	异步地: OCx = CCxP , OCx_E	EN = 0, $OCxN = CCxNP$,
	0		1	0	OCxN_EN = 0;	
	0		1	1	若时钟存在: 经过一个死区时间	后
					OCx = OISx, $OCxN = OISxN$,	: 00 TH 00 N W+ W+ T
0	1	×	0	0	假设 OISx 与 OISxN 并不都对应	
	1	-	0	1	关闭状态 (输出使能且为无效电子	•
	1	-	1	0	OCxN_EN = 1;	IN - 1, OUNIN - OUNINI,
	1	+	1	1	若时钟存在:经过一个死区时间	后
	•		-		OCx = OISx, $OCxN = OISxN$,	···
					假设 OISx 与 OISxN 并不都对应	OCx 和 OCxN 的有效电平。

^{1.} 如果一个通道的 2 个输出都没有使用 (CCxE = CCxNE = 0), 那么 OISx, OISxN, CCxP 和 CCxNP 都必须清零。

注:管脚连接到互补的 OCx 和 OCxN 通道的外部 I/O 管脚的状态,取决于 OCx 和 OCxN 通道状态和 GPIO 以及 AFIO 寄存器。

19.4.8 TIM16/17 计数器 (TIM16/17_CNT)

偏移地址: 0x24 复位值: 0x0000

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								CNT								
ı	rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bit	Field	Туре	Reset	Description
15: 0	CNT	rw	0x0000	计数器的值

19.4.9 TIM16/17 预分频寄存器 (TIM16/17_PSC)

偏移地址: 0x28 复位值: 0x0000

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								PSC	,							
	rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bit	Field	Туре	Reset	Description
15: 0	PSC	rw	0x0000	预分频器的值 (Prescaler value)
				计数器的时钟频率 (CK_CNT) 等于 f _{CK_PSC} /(PSC + 1)。
				PSC 包含了当更新事件 (包括使用 TIMx_EGR 寄存器的
				UG 或者当配置为复位模式时通过触发控制器清除计数器)
				产生时装入当前预分频器寄存器的值。

19.4.10 TIM16/17 自动重装寄存器 (TIM16/17_ARR)

偏移地址: 0x2C 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							ARR								
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bit	Field	Туре	Reset	Description
15: 0	ARR	rw	0x0000	自动重装载的值 (Prescaler value)
				ARR 包含了将要装载入实际的自动重装载寄存器的数值。
				详细参考小节 19.3.1:有关 ARR 的更新和动作。
				当自动重装载的值为空时,计数器不工作。

19.4.11 TIM16/17 重复计数寄存器 (TIM16/17_RCR)

偏移地址: 0x30

复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Re	eserve	t						RI	EP			
								rw							

Bit	Field	Туре	Reset	Description
15: 8	Reserved			保留,始终读为0。
7: 0	REP	rw	0x00	重复计数器的值 (Repetition counter value)
				预装载寄存器被使能后,这些位允许用户设置比较寄存器
				的更新速率 (即周期性地从预装载寄存器传输到当前寄存
				器); 如果允许产生更新中断,则会同时影响产生更新中断
				的速率。
				每次REP_CNT向下计数到0,会产生一个更新事件并且计
				数器 REP_CNT 重新从 REP 值开始计数。由于 REP_CNT
				只有在周期更新事件 U_RC 发生时才重载 REP 值, 因此对
				TIMx_RCR 寄存器写入的新值只在下次周期更新事件发生
				时才起作用。这意味着在 PWM 模式中,(REP+1) 对应着
				在边沿对齐模式下 PWM 周期的数目。

19.4.12 TIM16/17 捕获/比较寄存器 1(TIM16/17_CCR1)

偏移地址: 0x34 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CCR1								
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bit	Field	Туре	Reset	Description
15: 0	CCR1	rw	0x0000	捕获/比较 1 的值 (Capture/Compare 1 value)
				若 CC1 通道配置为输出:
				CCR1 包含了装入当前捕获/比较 1 寄存器的值 (预装载
				值)。如果在 TIMx_CCMR1 寄存器 (OC1PE 位) 中未选
				择预装载特性,写入的数值会被立即传输至当前寄存器中。
				否则只有当更新事件发生时,此预装载值才传输至当前捕
				获/比较 1 寄存器中。当前捕获/比较寄存器参与同计数器
				TIMx_CNT 的比较,并在 OC1 端口上产生输出信号。
				若 CC1 通道配置为输入:
				CCR1 包含了由上一次输入捕获 1 事件 (IC1) 传输的计数
				器值。

19.4.13 TIM16/17 刹车与死区时间寄存器 (TIM16/17_BDTR)

偏移地址: 0x44

复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MOE	AOE	ВКР	BKE	OSSR	OSSI	LO	CK				DTG	;			
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

注:根据锁定设置,AOE、BKP、BKE、OSSI、OSSR和DTG[7:0]位均可被写保护,有必要在第一次写入TIMx_BDTR寄存器时对它们进行配置。

Bit	Field	Туре	Reset	Description
15	MOE	rw	0x00	主输出使能 (Main output enable) 当刹车输入有效时,该位被硬件异步清'0'。根据 AOE 位的设置值,该位可以由软件清'0'或被自动置'1'。它仅对配置为输出的通道有效。 0: 禁止 OC 和 OCN 输出或强制为空闲状态 1: 如果设置了相应的使能位(TIMx_CCER 寄存器的CCxE、CCxNE位),则开启 OC 和 OCN 输出有关 OC/OCN 使能的细节,参见小节 19.4.7,TIM16/17 捕获/比较使能寄存器 (TIM16/17_CCER)。
14	AOE	rw	0x00	自动输出使能 (Automatic output enable) 0: MOE 只能被软件置'1' 1: MOE 能被软件置'1'或在下一个更新事件被自动置'1'(如果刹车输入无效) 注: 当 LOCK 级别 (TIMx_BDTR 寄存器中的 LOCK 位) 设为'1'时,该位不能被修改。
13	ВКР	rw	0x00	刹车输入极性 (Break polarity) 0: 刹车输入低电平有效 1: 刹车输入高电平有效 注: 当 LOCK 级别 (TIMx_BDTR 寄存器中的 LOCK 位) 设为'1'时,则该位不能被修改。 注: 任何对该位的写操作都需要一个 APB 时钟的延迟以后才能起作用。
12	BKE	rw	0x00	刹车使能 (Break enable) 0: 刹车输入禁止 (BRK 和 CCS 时钟失效事件) 1: 刹车输入允许 (BRK 和 CCS 时钟失效事件) 注: 当 LOCK 级别 (TIMx_BDTR 寄存器中的 LOCK 位) 设为'1'时,该位不能被修改。 注: 任何对该位的写操作都需要一个 APB 时钟的延迟以后才能起作用。

Bit	Field	Туре	Reset	Description
11	OSSR	ΓW	0x00	运行模式下'关闭状态'选择(Off-state selection for Run mode) 该位用于当 MOE = 1 且通道为互补输出时。没有互补输出的定时器中不存在 OSSR 位。参考 OC/OCN 使能的详细说明(小节 19.4.7, TIM1 捕获/比较使能寄存器(TIMx_CCER))。 0: 当定时器不工作时,禁止 OC/OCN 输出(OC/OCN 使能输出信号 = 0) 1: 当定时器不工作时,如果 CCxE = 1 或 CCxNE = 1, OC/OCN 使能并输出无效电平,然后置 OC/OCN 使能输出信号 = 1 注: 当 LOCK 级别(TIMx_BDTR 寄存器中的 LOCK 位) 设为'2'时,该位不能被修改。
10	OSSI	rw	0x00	运行模式下"空闲状态"选择 (Off-state selection fo Idle mode) 该位用于当 MOE = 0 时通道为输出。参考 OC/OCN 使能的详细说明 (小节 19.4.7, TIM1 捕获/比较使能寄存器 (TIMx_CCER))。 0: 当定时器不工作时,禁止 OC/OCN 输出 (OC/OCN 使能输出信号 = 0); 1: 当定时器不工作时,如果 CCxE = 1 或 CCxNE = 1, OC/OCN 被强制输出空闲电平,置 OC/OCN 使能输出信号 = 1。 注: 当 LOCK 级别 (TIMx_BDTR 寄存器中的 LOC 位) 设为 '2'时,该位不能被修改。
9: 8	LOCK	rw	0x00	锁定设置 (Lock configuration) 该位为防止软件错误而提供写保护。 00: 锁定关闭,寄存器无写保护; 01: 锁定级别 1,不能写入 TIMx_BDTR 寄存器的 DTG、BKE、BKP、AOE 位和 TIMx_CR2 寄存器的 OISx/OISxN位; 10: 锁定级别 2,不能写入锁定级别 1 中的各位,也不能写入 CC 极性位 (当相关通道通过 CCxS 位设为输出时,CC 极性位是 TIMx_CCER 寄存器的 CCxP/CCNxP 位) 以及 OSSR/OSSI 位; 11: 锁定级别 3,不能写入锁定级别 2 中的各位,也不能写入 CC 控制位 (当相关通道通过 CCxS 位设为输出时,CC 控制位是 TIMx_CCMRx 寄存器的 OCxM/OCxPE 位); 注: 在系统复位后,只能写一次 LOCK 位,当写入 TIMx_BDTR 寄存器时,其内容冻结直至复位。

Bit	Field	Туре	Reset	Description
7: 0	DTG	rw	0x00	死区发生器设置 (Dead-time generator setup)
				这些位定义了插入互补输出之间的死区持续时间。假设 DT
				表示其持续时间:
				DTG[7: 5] = 0xx:
				DT = (DTG[7: 0] + 1) × t_{dtg} , $t_{dtg} = t_{DTS}$;
				DTG[7: 5] = 10x:
				DT = (DTG[5: 0] + 1 + 64) \times t _{dtg} , t _{dtg} = 2 \times t _{DTS} ;
				DTG[7: 5] = 110:
				DT = (DTG[4: 0] + 1 + 32) × t_{dtg} , t_{dtg} = 8 × t_{DTS} ;
				DTG[7: 5] = 111:
				DT = (DTG[4: 0] + 1 + 32) × t_{dtg} , t_{dtg} = 16 × t_{DTS} ;
				例:若 t _{DTS} = 125ns(8MHz),可能的死区时间为:
				125ns 到 15875ns(步长时间为 125ns),
				16μs 到 31750ns(步长时间为 250ns),
				32μs 到 63μs(步长时间为 1μs),
				64μs 到 126μs(步长时间为 2μs)。
				注: 当 LOCK 级别 (TIMx_BDTR 寄存器中的 LOCK 位) 设为 1、
				2 或 3 时,不能修改这些位。

19.4.14 TIM16/17 DMA 控制寄存器 (TIM16/17_DCR)

偏移地址: 0x48 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	eserve	d	DBL				Reserved			DBA					
			w	w	W	w	w				w	w	w	w	w

Bit	Field	Туре	Reset	Description
15: 13	Reserved			保留,始终读为0。
12: 8	DBL	W	0x00	DMA 连续传送长度 (DMA burst length) 这些位定义了 DMA 在连续模式下的传送长度 (当对TIMx_DMAR 寄存器进行写操作时,定时器则进行一次连续传送),即:定义传输的字节数目: 00000:1 个字节 00001:2 个字节 00010:3 个字节
7: 5	Reserved			保留,始终读为0。

Bit	Field	Туре	Reset	Description
4: 0	DBA	w	0x00	DMA 基地址 (DMA base address) 这些位定义了 DMA
				传送的基地址 (当对 TIMx_DMAR 寄存器进行写操作时),
				DBA 定义为从 TIMx_CR1 寄存器所在地址开始的偏移量。
				例如:
				00000: TIMx_CR1
				00001: TIMx_CR2
				00010: TIMx_SMCR
				例:要完成如下的传输: DBL = 7, DBA = TIMx_CR1
				此时传送从 TIMx_CR1 的地址开始向/自连续 7 个寄存器
				进行操作。

19.4.15 TIM16/17 全传输地址寄存器 (TIM16/17_DMAR)

偏移地址: 0x4C 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DMA	В							
w	W	w	w	w	w	w	W	W	w	w	W	w	w	w	w

Bit	Field	Туре	Reset	Description
15: 0	DMAB	W	0x0000	DMA 连续传送寄存器 (DMA register for burst accesses)
				对 TIMx_DMAR 寄存器的写操作会导致对以下地址所在寄
				存器的存取操作:
				TIMx_CR1 地址 +(DBA+DMA 索引)× 4,
				其中: 'TIMx_CR1 地址'是控制寄存器 1(TIMx_CR1) 所
				在的地址; 'DBA'是 TIMx_DCR 寄存器中定义的基地
				址;'DMA 索引'是由 DMA 自动控制的偏移量,它取决于
				TIMx_DCR 寄存器中定义的 DBL。

如何使用 DMA 并发操作的例子

本例中使用定时器 DMA 的并发功能,将 CCRx 寄存器的内容以半字方式进行 DMA 传输,更新到 CCRx 寄存器。按如下步骤进行操作:

- 1. 配置相关的 DMA 通道:
 - (a) DMA 通道设备地址为 DMAR 寄存器地址
 - (b) DMA 通道存储器地址为包含要通过 DMA 传送到 CCRx 寄存器的数据 RAM 缓冲 区地址
 - (c) 传送数据数量 = 3(见下面的注)
 - (d) 通告模式禁止
- 2. 配置 DCR 寄存器的 DBA 和 DBL 位: DBL = 3 次传送, DBA = 0xE。

- 3. 使能 TIMx 更新 DMA 请求 (设置 DIER 寄存器的 UDE 位)
- 4. 使能 TIMx
- 5. 使能 DMA 通道

注:在本例中所有 CCRx 寄存器被一次性全部更新。如果需要更新 CCRx 寄存器两次,传送的数据数量应该是 6,而 RAM 缓冲区要包含 data1, data2, data3, data4, data5 和 data6。数据按如下过程被传送到 CCRx 寄存器:在第一个更新 DMA 请求时,data1 被传送到 CCR2, data2 被传送到 CCR3, data3 被传送到 CCR4,在第二个 DMA 更新中断请求时,data4 被传送到 CCR2, data5 被传送到 CCR3, data6 被传送到 CCR4。

20

脉冲宽度调制 (PWM)

脉冲宽度调制 (PWM)

20.1 PWM 控制简介

PWM 控制模块控制高级定时器 TIM1 输出的 PWM 波形, 生成六步方波驱动电机运转。该模块支持自动换相屏蔽 (auto phase mask), 电流补偿 (Current Compensation) 和电流保护 (Current Protection) 功能。

20.2 PWM 控制主要特征

- 自动换相屏蔽生成六步方波, 开关极性与 TIM1 设置一致
- 电流补偿,换相时可以开启电流自动补偿
- 电流保护, 过流立刻切断输出

20.3 PWM 控制功能描述

PWM 控制模块通过控制 TIM1 输出或屏蔽 PWM 波形,屏蔽后可选择输出高电平或者低电平,功能框图如下:

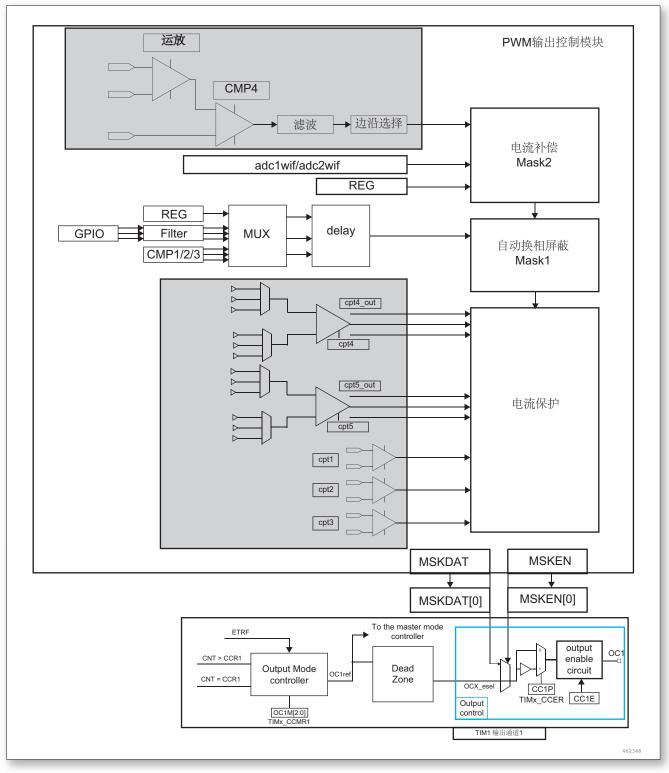


图 209. PWM 控制模块框图

TIM1 的 ocx_esel 信号经过极性选择和使能控制,会在 OCx 和 OCxN 输出互补 PWM 波形,在电流保护或者方波驱动的情况下,有的 PWM 输出会屏蔽,输出高电平或者低电平。 PWM 控制模块会根据比较器,霍尔传感器,GPIO 或者寄存器设置,控制 TIM1 的 PWM 输出。

20.4 自动换相屏蔽

在霍尔换相信号触发时,该模块会根据事先配置的 MSKEN[5:0] 与 MSKDAT[5:0] 控制 TIM1 的 6 路 PWM 波形,依据需求输出不同的波形驱动电机转动。

下图是两种不同的 PWM 六步方波驱动示例:

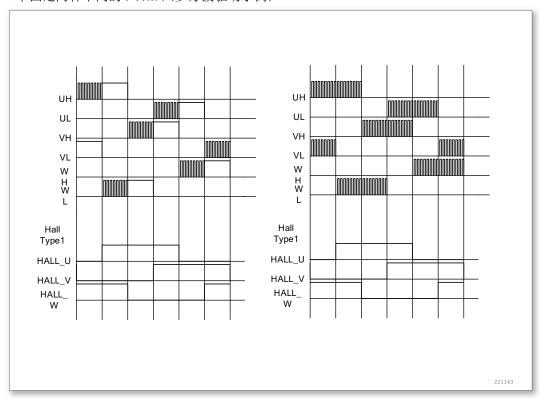


图 210. PWM 方波驱动示例

自动换相屏蔽根据三相霍尔输入信号控制 PWM 是否屏蔽。下一步输入信号可以通过 PWM _ APMSKR 寄存器中的 APM_TRGSEL 选择,并且在 APMDLR 中设置延时装载,在触发输入延时后切换屏蔽设置,并触发中断状态标志。

- 比较器 COMP 1/2/3 的输出,比较器外部可以连霍尔传感器。
- 经过滤波后的 GPIO 输入, GPIO 的通过 PWM_CSR 寄存器的 HALL_TRGSEL 选择 TIM2 在不同复用功能下的输入引脚。GPIO 的滤波器带宽在 IOFLT 寄存器中设置。
- 软件设置,在 PWM_APMSKR 寄存器中 APM_STRG 写 1 会产生 ENTRGI 位设置的三相输入。

六步 PWM 的下一步输入信号的变化是根据当前输入信号固定的,当前的三相输入可以在 PWM_APMSKR 寄存器的 CTRGI 查询,触发信号变化在 APMDLR 设置的延时后会产生 自动换相屏蔽触发中断标志 APMTF。如果三相输入信号与 ENTRGI 寄存器设置不同,还 会产生触发输入错误标志 TERRF。

在六步 PWM 驱动时,可以设置下一步是否屏蔽 (MSKEN 或 MSKEN_CURR),以及屏蔽 后的 PWM 极性 (MSKDAT 或 MSKDAT_CURR)。MSKEN 和 MSKDAT 写入后不会立刻 生效,会在下一次触发后才屏蔽 TIM1 的输出。如果需要立刻生效,在设置 PWM_CSR 寄存器的 MSKEN_CURR 和 MSKDAT_CURR 的同时也使能 CURR_EN ,下一次触发后还是通过 MSKEN 和 MSKDAT 控制。

注意 MSKDAT 的值并不是 PWM 屏蔽后的值,只是表示输出有效值还是无效值,需要再根据 TIM1_CCER 寄存器的 CCxP 和 CCxNP 选择有效值是高电平还是低电平。

以下例子说明输入产生六步 PWM 波形,步骤如下:

- 选择触发输入信号,设置 PWM_APMSKR 寄存器的 APM_TRGSEL 位。
- 如果选择是 GPIO 作为触发输入,选择 GPIO 的引脚以及配置滤波器,设置 PWM_CSR 寄存器的 HALL TRGSEL 和 IOFLT 位。
- 设置下一步的期待触发输入组合 ENTRGI。
- 设置下一步的 PWM 输出屏蔽使能 MSKEN 以及屏蔽时的端口值 MSKDAT。
- 等待自动换相屏蔽的触发信号, 重复上两步的设置。

20.5 电流补偿

自动换相过程中,电流的剧烈变化会造成电机旋转的抖动,电流补偿模块可以在换相后进行换相补偿,滤除电流的波动。为了补偿换相过程中的电压下降,换相后立即将 PWM 输出直接设置为有效电平,然后一直检测换相后的电流,直到换相后的电流恢复到换相前的电流值就把 PWM 恢复为换相前 PWM 的值。

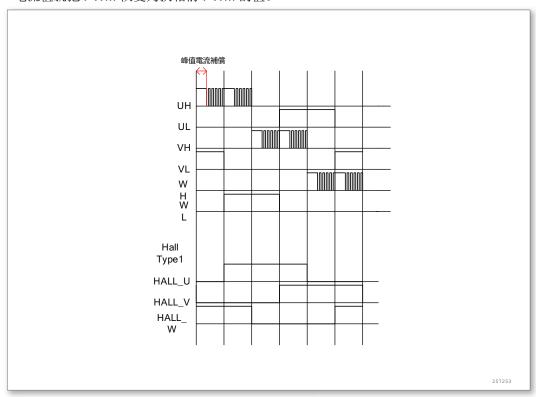


图 211. PWM 方波驱动示例

在电流触发功能使能后 (CCE = 1),换相后 PWM 输出有效电平,直到检测电流恢复正常,触发 PWM 恢复正常方波输出。触发信号可通过 PWM_CSR 寄存器的 CC_TRGSEL 选择:

- 软件触发电流补偿: 在 CC STRG 写 1 后触发 PWM 恢复正常输出。
- ADC1 或者 ADC2 的数位比较器触发电流补偿功能。
- 比较器 COMP4 触发电流补偿功能。

20.6 电流保护

当检测到 COMP 1/2/3/4/5 端的高电平触发电流保护功能,电流保护将关闭 PWM 输出 (引脚输出无效电平),防止电机烧毁。

在电流保护功能使能后 (CPE = 1),可以选择电流保护的触发信号由哪个比较器产生。当电流过大的时候,PWM 输出关闭,在电流恢复在正常区间后,PWM 输出自动打开。

在选择比较器 COMP 1/2/3 作为电流保护的触发信号时,只检测一个电流值。在选择比较器 COMP 4/5 作为电流保护的触发信号,并且在 PWM_CSR 寄存器的 CP_MDSEL 设置打开轮询通道保护功能时,可以同时监测三个电流值,或者同时监测三个电流值的上限和下限。

20.7 PWM 控制寄存器描述

表 56. PWM 寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	PWM_CSR	输出控制状态寄存器	0x00000000	小节 20.7.1
0x04	PWM_APMSKR	自动换相屏蔽寄存器	0x00000000	小节 20.7.2
0x08	PWM_APMDLR	自动换相屏蔽延时装载寄存器	0x00000000	小节 20.7.3

20.7.1 PWM_CSR

偏移地址: 0x00

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res. MSKEN_CURR						MSKDAT_CURR						CUR R_EN	HALL _.	_	
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	w	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	IOFLT		TERR F		CP_M DSEL	CP _.	_TRGS	SEL	CC_S TRG	CC_ GSI	_TR EL	TERR IE	APMT IE	CPE	CCE
rw	rw	rw	rc-w0	rc-w0	rw	rw	rw	rw	w	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31	Reserved			始终读为 0。
30 : 25	MSKEN_	rw	0x00	PWM 输出屏蔽立即使能
	CURR			CURR_EN 有效时立即控制 MSKDAT_CURR 的载入
				请对比参考 PWM_APMSKR 的 MSKEN[5:0]
24 : 19	MSKDAT_	rw	0x00	PWM 屏蔽时端口立即输出
	CURR			CURR_EN 有效时立即载入到 PWM 输出端口
				请对比参考 PWM_APMSKR 的 MSKDAT[5:0]
18	CURR_EN	W	0x00	使能当前输入状态值 (MSKDAT_CURR 和
				MSKEN_CURR)
				硬件自动清零,读为零。

Bit	Field	Туре	Reset	Description
17 : 16	HALL_ TRGSEL	rw	0x00	对应 Hall 传感器的三路 GPIO 输入选择 11: TIM2 在复用功能 = 6 的输入三个引脚 10: TIM2 在复用功能 = 5 的输入三个引脚 01: TIM2 在复用功能 = 4 的输入三个引脚 00: TIM2 在复用功能 = 2 的输入三个引脚 例如: 当 HALL_TRGSEL[1:0] = 00 时,配置 PA[0]/PA[1]/PA[2] 将映射到 GPIO 1/2/3 作为自动换 相输入触发源。
15 : 13	IOFLT	rw	0x00	GPIO 输入滤波(GPIO Input filter) 这些位控制 GPIO 触发输入的滤波,连续的 PCLK2 时钟比较器输出不变则认为是有效的结果,否则保持不变。111:512个时钟周期100:256个时钟周期100:64个时钟周期001:32个时钟周期011:32个时钟周期010:16个时钟周期010:16个时钟周期001:4个时钟周期001:4个时钟周期
12	TERRF	rc_w0	0x00	触发输入错误标志(Trigger Error Flag) 当触发输入信号与期待的下一步触发输入(ENTRGI)不符时,该位置 1。 写 0 清除该位。
11	APMTF	rc_w0	0x00	自动换相屏蔽触发中断标志(Auto Phase Mask Trigger Flag) 当自动换相屏蔽触发选择(APM_TRGSEL)选择的触发信号变化时,该位置 1。 写 0 清除该位。
10	CP_MDSEL	rw	0x00	电流保护模式选择(Current Protection Mode Selection) 1: 打开轮询通道保护功能 0: 全通道关闭功能 注意: 1. 该位仅对 CP_TRGSEL[2:0] 选择 [011,100,101] 即选择 比较器 4/5 时有效,对比较器 1/2/3 无效,因为 cpt1/2/3 仅 支持全通道关闭功能。 2. CP_TRGSEL[2:0]=011/100 时,cptx[0] 对应控制 CH1/CH1N;cptx[1] 对应控制 CH2/CH2N;cptx[2] 对应控制 CH3/CH3N 3. CP_TRGSEL[2:0]=101 时,cpt4[2:0] 分别对 应控制 CH3/CH2/CH1; cpt5[2:0] 分别对应控制 CH3N/CH2N/CH1N;

Bit	Field	Туре	Reset	Description
9:7	CP_TRGSEL	ΓW	0x00	电流保护触发选择(Current Protection Trigger Selection) 其余保留 101:比较器 4/5 触发电流保护功能 100:比较器 5 触发电流保护功能 011:比较器 4 触发电流保护功能 010:比较器 3 触发电流保护功能 001:比较器 2 触发电流保护功能 000:比较器 1 触发电流保护功能 注:当 CP_TRGSEL[2:0] = 101 时,可以同时使用 COMP4 和 COMP5,配合两个比较器,可以检查电流的上限与下限。
6	CC_STRG	W	0x00	电流补偿软件触发寄存器(Current Compensation Software Trigger) 写 1 会软件触发电流补偿功能。 硬件自动清零,读为零。
5:4	CC_TRGSEL	rw	0x00	电流补偿触发选择(Current Compensation Trigger Selection) 11: 软件触发电流补偿触功能 10: ADC1/2 数位比较器输出(ADC1WIF/ADC2WIF 标志位输出)电流补偿功能 01: 比较器 4 触发电流补偿功能 00: 保留
3	TERRIE	rw	0x00	触发输入错误中断使能(Trigger Error Interrupt Enable) 1:中断使能 0:中断禁止
2	APMTIE	rw	0x00	自动换相屏蔽触发中断使能(Auto Phase Mask Trigger Interrupt Enable) 1: 中断使能 0: 中断禁止
1	CPE	rw	0x00	电流保护功能使能 (Current Protection Enable) 1: 使能 0: 禁止
0	CCE	rw	0x00	电流补偿功能使能 (Current Compensation Enable) 1: 使能 0: 禁止

20.7.2 PWM_APMSKR

偏移地址: 0x04

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	R	eserve	d				CTRGI			ENTRO	3I	Res.	APM _STR G	APM_ SE	TRIG
						r	r	r	rw	rw	rw		rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Re	es.			MSł	KEN			Re	es.			MSKI	DAT		
		rw	rw	rw	rw	rw	rw			rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31 : 26	Reserved			始终读为 0 。
25 : 23	CTRGI	r	0x00	当前触发输入(Current Trigger Input) 当前的触发输入信号。只读。 如果 APM_TRGSEL=00 或 01 时,该位为 0。 如果 APM_TRGSEL=10 或 11 时,该位为 GPIO 或者比较 器的输入值。
22 : 20	ENTRGI	rw	0x00	期待的下一步触发输入(Expect Next Trigger Input)如果触发的时候,ENTRGI 与触发输入的值不同的话,会产生触发输入错误中断标志
19	Reserved			始终读为 0。
18	APM_STRG	rw	0x00	自动换相软件触发寄存器(Auto Phase Mask Software Trigger) 写 1 会软件触发自动换相屏蔽功能。 硬件自动清零, 读为零。
17 : 16	APM_TRGSEL	rw	0x00	自动换相屏蔽触发选择(Auto Phase Mask Trigger Selection) 11: 比较器 1/2/3 触发自动换相屏蔽功能 10: GPIO 触发自动换相屏蔽功能 01: 软件触发自动换相屏蔽功能 00: 自动换相屏蔽功能禁止
15 : 14	Reserved			始终读为 0。
13:8	MSKEN	rw	0x00	PWM 输出屏蔽使能(PWM mask function enable) 1: PWM 输出屏蔽功能使能 0: PWM 输出屏蔽功能禁止 位 0 和 1 对应 TIM_CH1 和 TIM_CH1N,位 2 和 3 对 应 TIM_CH2 和 TIM_CH2N,位 4 和 5 对应 TIM_CH3 和 TIM_CH3N。 注: 在触发时间发生后才会真正影响 PWM 输出
7:6	Reserved			始终读为 0。

Bit	Field	Туре	Reset	Description
5:0	MSKDAT	rw	0x00	PWM 输出屏蔽时端口的值 (PWM mask data)
				PWM 屏蔽时端口输出有效值,有效值的电平还需要根据
				TIM1_CCER 寄存器的 CCxP 和 CCxNP 决定。
				1: 屏蔽时输出有效值
				0: 屏蔽时输出无效值
				位 0 和 1 对应 TIM_CH1 和 TIM_CH1N, 位 2 和 3 对
				应 TIM_CH2 和 TIM_CH2N,位 4 和 5 对应 TIM_CH3 和
				TIM_CH3N。
				注:在触发时间发生后才会真正影响 PWM 输出

20.7.3 PWM_APMDLR

偏移地址: 0x08

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Res	erved				APMDLR								
						rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							APM	IDLR							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31 : 26	Reserved			始终读为 0。
25:0	APMDLR	rw	0x00	自动换相屏蔽延时装载寄存器 (Auto Phase Mask delay
				load register)

21 独立看门狗 (IWDG)

独立看门狗 (IWDG)

21.1 (IWDG 简介)

内置两个看门狗,提供了更高的安全性、时间的精确性和使用的灵活性。两个看门狗设备(独立看门狗和窗口看门狗)可用来检测和解决由软件错误引起的故障;当计数器达到给定的超时值时,触发一个中断(仅适用于窗口型看门狗)或产生系统复位。

独立看门狗(IWDG)由专门的低速时钟(LSI)驱动,即使主时钟发生故障它也仍然有效。窗口看门狗由从 APB1 时钟分频后得到的时钟驱动,通过可配置的时间窗口来检测应用程序非正常的过迟或过早的操作。

IWDG 最适合应用于那些需要看门狗作为一个正在主程序外,能够完全独立工作,并且对时间精度要求低的场合。WWDG 最适合那些要求看门狗在精确计时窗口起作用的应用程序。

21.2 IWDG 主要性能

- 自由运行的递减计数器
- 时钟由独立的振荡器提供(可在停止和待机模式下工作)
- 看门狗被激活后,则在计数器计数至 0x0000 时产生复位。

21.3 IWDG 功能描述

下图为独立看门狗模块的功能框图。

在键寄存器(IWDG_KR)中写入0xCCCC。开始启动独立看门狗;此时计数器开始从其复位值0xFFF 递减计数。当计数器计数到末尾0x000时,会产生一个复位信号(IWGD_RESET)。无论何时,只要在键寄存器 IWDG_KR 中写入0xAAAA,IWDG_RLR 中的值就会被重新加载到计数器,从而避免产生看门狗复位。

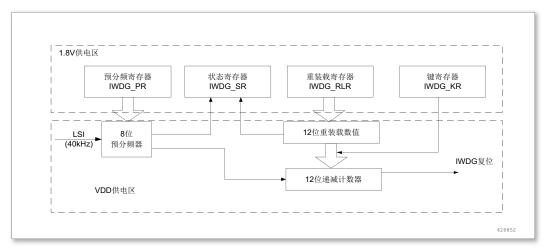


图 212. 独立看门狗框图

注:看门狗功能处于 V_{DD} 供电区,即在停机和待机模式时仍能正常工作。

表 57. 看门狗超时时间 (40KHz 的输入时钟 (LSI))

预分频系数	PR[2:0] 位	最短时间 RL[11:0]=0x000	最长时间
/4	0	0.1	409.6
/8	1	0.2	819.2
/32	3	0.8	3276.8
/64	4	1.6	6553.6
/128	5	3.2	13107.2
/256	(6 或 7)	6.4	26214.4

注: 这些时间是按照 40KHz 时钟给出。实际上, MCU 内部的振荡器频率会在 30KHz 到 60KHz 之间变化。

此外,即使振荡器的频率是精确的,确切的时序仍然依赖于 APB 接口时钟与振荡器时钟之间的相位差,因此总会有一个完整的振荡器周期是不确定的。

21.3.1 硬件看门狗

如果用户在选择字节中(请参考"嵌入式闪存"章节)启动了'硬件看门狗'功能,在系统上电复位后,看门狗会自动开始运行;如果在计数器计数结束前,若软件没有向键寄存器写入相应的值,则系统会产生复位。

21.3.2 寄存器访问保护

IWDG_PR 和 IWDG_RLR 寄存器具有写保护功能。要修改这两个寄存器的值,必须先向 IWDG_KR 寄存器中写入 0x5555。以不同的值写入这个寄存器将会打乱操作顺序,寄存器将重新被保护。重装载操作(即写入 0xAAAA)也会启动写保护功能。

状态寄存器指示预分频值和递减计数器是否正在被更新。

21.3.3 调试模式

当微控制器进入调试模式时(CPU 核心停止),根据调试模块中的 DBG_IWDG_STOP 配置位的状态,IWDG 的计数器能够继续工作或停止。详见调试模块的章节。

21.4 IWDG 寄存器描述

表 58. IWDG 寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	IWDG_KR	键寄存器	0x00000000	小节 21.4.1
0x04	IWDG_PR	预分频寄存器	0x00000000	小节 21.4.2
0x08	IWDG_RLR	重装载寄存器	0x00000FFF	小节 21.4.3
0x0C	IWDG_SR	状态寄存器	0x00000000	小节 21.4.4
0x10	IWDG_CR	控制寄存器	0x00000000	小节 21.4.5

21.4.1 键寄存器 (IWDG_KR)

偏移地址: 0x00 复位值: 0x0000 0000 (在待机模式复位)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		·	·				KE	ΞΥ		·	·	·	·	·	
w	W	W	W	W	W	W	W	W	W	W	W	W	W	W	w

Bit	Field	Type	Reset	Description
31 : 16	Reserved			始终读为 0。
15:0	KEY	W	0x0000	键值(只写寄存器,读出值为 0x0000)(Key value) 软件必须以一定的间隔写入 0xAAAA,否则,当计数器为 0 时,看门狗会产生复位。 写入 0x5555 表示允许访问 IWDG_PR 和 IWDG_RLR 寄存器。 写入 0xCCCC,启动看门狗工作。

21.4.2 预分频寄存器 (IWDG_PR)

偏移地址: 0x04 复位值: 0x0000 0000 (在待机模式复位)

31	30	29	28	27	26	25	24 Res	23 erved	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Reserv	ed .								PR	
													rw	rw	rw

Bit	Field	Туре	Reset	Description
31 : 3	Reserved			始终读为 0。
2:0	PR	ΓW	0x00	预分频因子(Prescaler divider) 这些位具有写保护设置。通过设置这些位来选择计数器时钟的预分频因子。要改变预分频因子,IWDG_SR 寄存器的 PVU 位必须为 0。 000: 预分频因子 = 4
				如果写操作正在进行,则读回的值可能是无效的。因此,只有对那个 IWDG_SR 寄存器的 PUV 位为 0 时,读出的值才有效。

21.4.3 重装载寄存器 (IWDG_RLR)

偏移地址: 0x08

复位值: 0x0000 0FFF (在待机模式复位)

31	30	29	28	27	26	25	24 Res	23 erved	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reser	ved							F	RL					
				r\n/	rw	rw	rw	rw	rw.	rw/	rw	rw	rw.	rw/	rw.

Bit	Field	Туре	Reset	Description
31 : 12	Reserved			始终读为 0。
11:0	RL	rw	0xFFF	看门狗计数器重装载值(Watchdog counter reload value)这些位具有写保护。用于定义看门狗计数器的重装载值,每当向 IWDG_KR 寄存器写入 0xAAAA 时,重装载值会被传送到计数器中。随后计数器从这个值开始递减计数。看门狗超时周期可通过次重装载值和时钟预分频值来计算。注:对此寄存器进行读操作,将从 V _{DD} 电压域返回预分频值。如果写操作正在进行,则读回的值可能是无效的。因此,只有当IWDG_SR 寄存器的 RUV 位为 0 时,读出的值才有效。

21.4.4 状态寄存器 (IWDG_SR)

偏移地址: 0x0C

复位值: 0x0000 0000 (待机模式时不复位)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved											RVU	PVU		

Field **Type** Reset **Description** Bit 31:2 Reserved 始终读为 0。 1 **RVU** 0x00 看门狗计数器重装载值更新(Watchdog counter reload value update) 此位由硬件置'1'用来指示重装载值的更新正在进行中。当 在 V_{DD} 域中的重装载更新结束后,此位由硬件清'0'(最 多需要 5 个 40KHz 的振荡器周期) 重装载值只有在 RVU 位被清'0'后才可更新。 PVU 0 0x00 看门狗预分频更新(Watchdog prescaler value update) 此位由硬件置'1'用来指示预分频值的更新正在进行中。当 在 V_{DD} 域中的预分频值更新结束后,此位由硬件清 '0'(最 多需要 5 个 40KHz 的振荡器周期)预分频值只有在 RVU 位被清'0'后才可更新。

注:如果在应用程序中使用多个重装载值或预分频值,则必须在RVU 位被清除后才能重新改变预装载值,在PVU 位被清除后才能重新改变预分频值。然而,在预分频和/或重装值更新后,不必等待RVU 或PVU 复位,可以继续执行下面的代码。(即使在低功耗模式下,次写操作仍会被继续执行完成)

21.4.5 IWDG 控制寄存器 (IWDG CR)

地址偏移: 0x10

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved												IRQ_ CLR	IRQ_ SEL	

rw rv

Bit	Field	Type	Reset	Description
31: 2	Reserved			保留,始终读为0。
1	IRQ_CLR	rw	0x00	IWDG 中断清除 1: 写 1 清除中断 0: 无操作
0	IRQ_SEL	rw	0x00	IWDG 溢出操作选择1: 溢出后产生中断0: 溢出后产生复位

22 窗口看门狗 (WWDG)

窗口看门狗 (WWDG)

22.1 WWDG 简介

窗口看门狗通常被用来监测由外部干扰或不可预见的逻辑条件造成的应用程序背离正常的 运行序列而产生的软件故障。除非递减计数器的值在 T6 位变成 0 前被刷新,看门狗电路 在达到预置的时间周期时,会产生一个 MCU 复位。在递减计数器达到窗口寄存器数值之 前,如果7位的递减计数器数值(在控制寄存器中)被刷新,那么也将产生一个 MCU 复位。 这表明递减计数器需要在一个有限的时间窗口中被刷新。

22.2 WWDG 主要特征

- 可编程的自由运行递减计数器
- 条件复位:
 - 当递减计数器的值小于 0x40, (若看门狗被启动) 则产生复位。
 - 当递减计数器在窗口外被重新装载,(若看门狗被启动)则产生复位
- 如果启动了看门狗并且允许中断, 当递减计数器等于 0x40 时产生早期唤醒中断 (EWI), 它可以被用于重装载计数器以避免 WWDG 复位。

22.3 WWDG 功能描述

如果看门狗被启动 (WWDG_CR 寄存器中的 WDGA 位被置'1'), 并且当 7 位 (T[6:0]) 递减计数器从 0x40 翻转到 0x3F((T6 位清零) 时,则产生一个复位。如果软件在计数器值 大于窗口寄存器中的数值时重新装载计数器,将产生一个复位。

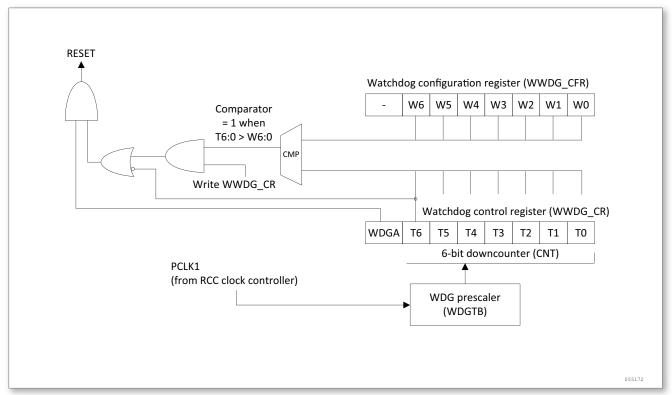


图 213. 看门狗框图

应用程序在正常运行过程中必须定期地写入 WWDG_CR 寄存器以防止 MCU 发生复位。只有当计数器值小于窗口寄存器的值时,才能进行写操作。储存在 WWDG_CR 寄存器中的数值必须在 0xFF 和 0xC0 之间:

• 启动看门狗

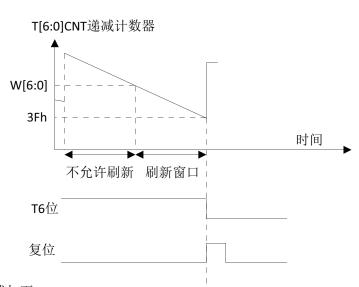
在系统复位后,看门狗总是处于关闭状态,设置 WWDG_CR 寄存器的 WDGA 位能够开启看门狗,随后它不能再被关闭,除非发生复位。

• 控制递减计数器

递减计数器处于自由运行状态,即使看门狗被禁止,递减计数器仍继续递减计数。当看门狗被启用时,**T6** 位必须被设置,以防止立即产生一个复位。

T[5: 0] 位包含了看门狗产生复位之前的计时数目;复位前的延时时间在一个最小值和一个最大值之间变化,这是因为写入 WWDG CR 寄存器时,预分频值是未知的。

配置寄存器 (WWDG_CFR) 中包含窗口的上限值:要避免产生复位,递减计数器必须在其值小于窗口寄存器的数值并且大于 0x3F 时被重新装载,上图描述了窗口寄存器的工作过程。


另一个重装载计数器的方法是利用早期唤醒中断 (EWI)。设置 WWDG_CFR 寄存器中的 WEI 位开启该中断。当递减计数器到达 0x40 时,则产生此中断,相应的中断服务程序 (ISR) 可以用来加载计数器以防止 WWDG 复位。在 WWDG_SR 寄存器中写'0'可以清除该中断。

注:可以用 T6 位来产生一个软件复位 (WDGA 位被置位, T6 位清零)

22.4 如何编写看门狗超时程序

下图显示了装载到看门狗计数器 (CNT) 中的 6 位计数值和看门狗的延迟时间之间的线性 关系 (以 mS 为单位)。此图可用来做为快速计算的参考,而未将时间的偏差考虑在内。如 果需要更高的精度,可以使用下图提供的计算公式。

警告: 当写入 WWDG_CR 寄存器时,始终置 T6 位为'1'以避免立即产生一个复位。

计算超时的公式如下:

$$T_{WWDG} = T_{PCLK1} \times 4096 \times 2^{WDGTB} \times (T[5:0]+1)$$
 (mS)

其中:

T_{WWDG}. WWDG超时时间

T_{PCLK1}: APB1以mS为单位的时钟间隔

在PCLK1 = 36MHz时的最小-最大超时值

WDGTB	最小超时值	最大超时值
0	113μS	7.28mS
1	227μS	14.56mS
2	455μS	29.12mS
3	910μS	58.25mS

399420

图 214. 窗口看门狗时序图

22.5 调试模式

当微控制器进入调试模式时 (CPU 核心停止),根据调试模块中的 DBG_WWDG_STOP 配

rw

置位的状态, WWDG 的计数器能够继续工作或停止。详见有关调试模块的章节。

22.6 WWDG 寄存器描述

表 59. WWDG 寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	WWDG_CR	控制寄存器	0x0000007F	小节 22.6.1
0x04	WWDG_CFGR	配置寄存器	0x0000007F	小节 22.6.2
0x08	WWDG_SR	状态寄存器	0x00000000	小节 22.6.3

22.6.1 控制寄存器 (WWDG_CR)

偏移地址: 0x00

复位值: 0x0000 007F

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved								WDGA				Т			

rw

Bit	Field	Туре	Reset	Description
31:8	Reserved			保留,始终读为0
7	WDGA	rw	0x00	激活位 (Activation bit) 此位由软件置'1',但仅能由硬件在复位后清'0'。当 WDGA = 1 时,看门狗可以产生复位。 0: 禁止看门狗 1: 启动看门狗
6:0	T	rw	0x7F	7 位计数器 (MSB 至 LSB)(7 - bit counter) 这些位用来存储看门狗的计数器值。每 (4096x2 ^{WDGTB}) 个 PCLK1 周期减 1。当计数器值从 40h 变为 3Fh 时 (T6 变成 0),产生看门狗复位。

22.6.2 配置寄存器 (WWDG_CFGR)

偏移地址: 0x04

复位值: 0x0000 007F

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Res	erved		EWI	WD0	ЭТВ	WINDOW						
						rw	rv	v				rw			

Bit	Field	Туре	Reset	Description
31:10	Reserved			保留,始终读为0
9	EWI	rw	0x00	提前唤醒中断 (Early wakeup interrupt) 此位若置'1',则当计数器值达到 40h,即产生中断。 此中断只能由硬件在复位后清除。
8:7	WDGTB	rw	0x00	时基 (Timer base) 预分频器的时基可根据如下修改: 00: CK 计时器时钟 (PCLK1 除以 4096) 除以 1 01: CK 计时器时钟 (PCLK1 除以 4096) 除以 2 10: CK 计时器时钟 (PCLK1 除以 4096) 除以 4 11: CK 计时器时钟 (PCLK1 除以 4096) 除以 8
6:0	WINDOW	rw	0x7F	7 位窗口值 (7-bit window value) 这些位包含了用来与递减计数器进行比较用的窗口值。

22.6.3 状态寄存器 (WWDG_SR)

偏移地址: 0x08

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserve	ed							EWIF
															rc w0

Field Bit Reset Description Type 31:1 Reserved 保留,始终读为0 0 **EWIF** 提前唤醒中断标志 (Early wakeup interrupt flag) rc_w0 0x00 当计数器值达到 40h 时,此位由硬件置'1'。它必须通过 软件写'0'来清除。 对此位写'1'无效。若中断未被使能,此位也会被置'1'。

23

串行外设接口 (SPI)

串行外设接口 (SPI)

23.1 SPI 简述

SPI 接口广泛用于不同设备之间的板级通讯,如扩展串行 Flash, ADC 等。许多 IC 制造商生产的器件都支持 SPI 接口。

SPI 允许 MCU 与外部设备以全双工、同步、串行方式通信。应用软件可以通过查询状态或 SPI 中断来通信。

23.2 主要特征

- 完全兼容 Motorola 的 SPI 规格
- 支持 DMA 请求
- 在 3 根线上支持全双工同步传输
- 16 位的可编程波特率生成器
- 支持主机模式和从机模式
- 8 个字节的接收/发送 FIFO
- SPI 作为主机模式下 SPI 的时钟最快可高达 pclk/2 (pclk 为 APB 时钟), 作为从机模式下 SPI 的时钟最快可高达 pclk/4
- 可编程的时钟极性和相位
- 可编程的数据顺序, MSB 在前或者 LSB 在前
- 支持一个主机多个从机操作
- 支持 1~32 位的数据位长度同时发送和接收
- 除了 8 位数据收发, 其余 1~32 位数据收发只支持 LSB 模式, 不支持 MSB 模式。
- 支持各 8 个对应配置数据位(Data size)的发送缓冲器和接收缓冲器
- 中断驱动操作
 - 发送缓冲为空
 - 发送缓冲和发送移位寄存器同时为空
 - 接收缓冲为满
 - 接收缓冲上溢
 - 主模式下接收到指定字节数
 - 发送端下溢
 - 接收到有效字节

23.3 SPI 功能描述

23.3.1 概述

SPI 的方框图见下图

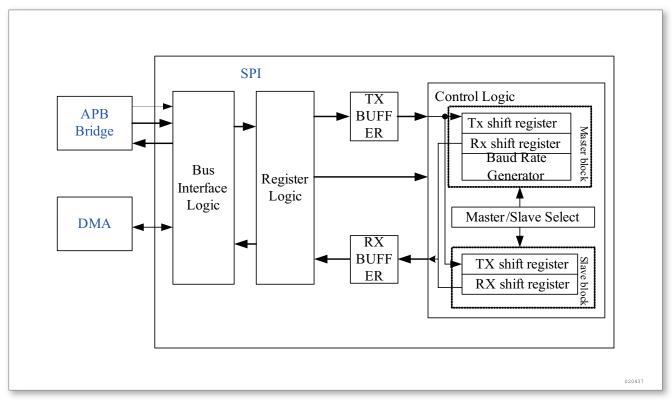


图 215. SPI 框图

SPI 支持接收和发送 1~32 位数据同时进行。SPI 可以被配置为从模式或者在一个主机环境下配置为主模式。可以通过配置时钟极性 CPOL 和相位 CPHA 选择四种可能的时序关系。可编程的数据顺序,MSB 在前或者 LSB 在前。

发送和接收部分使用相同的时钟。数据在时钟的上升沿或者下降沿输出,在 SCLK 相反的 有效沿锁存数据。因为 SPI 是用于交换数据,因此数据必须在转移结束后读取,即使数据 不是有效数据。在 SPI 模式下,主机和与其通信的从机的时钟相位和极性必须相同。

通常 SPI 通过 4 个管脚与外部器件相连:

- MISO: 主设备输入/从设备输出管脚。该管脚在从模式下发送数据,在主模式下接收数据。
- MOSI: 主设备输出/从设备输入管脚。该管脚在主模式下发送数据,在从模式下接收数据。
- SCK: 串口时钟, 作为主设备的输出, 从设备的输入。
- NSS: 从设备选择。这是一个可选的管脚,用来选择主/从设备。它的功能是用来作为'片选管脚',让主设备可以单独地与特定从设备通讯,避免数据线上的冲突。从设备的 NSS 管脚可以由主设备当作一个标准的 IO 来驱动。一旦被使能, NSS 管脚也可以作为输出管脚,并在 SPI 设置为主模式时拉低;此时,所有 NSS 管脚连接到主设备 NSS 管脚的SPI 设备,会检测到低电平。

下图是一个单主和单从设备互连的例子。

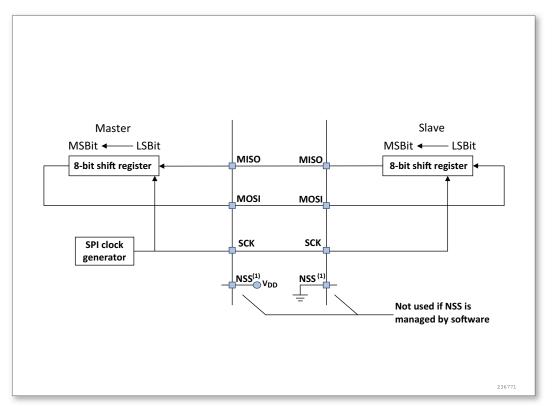


图 216. 单主和单从应用

MOSI 脚相互连接,MISO 脚相互连接。这样,数据在主和从之间串行地传输(MSB 位在前)。

通信总是由主设备发起。主设备通过 MOSI 脚把数据发送给从设备,从设备通过 MISO 引脚回传数据。这意味全双工通信的数据输出和数据输入是用同一个时钟信号同步的;时钟信号由主设备通过 SCK 脚提供。

时钟信号的相位和极性

SPI_CCTL 寄存器的 CPOL 和 CPHA 位,能够组合成四种可能的时序关系。CPOL (时钟极性) 位控制无数据传输期间 SCK 时钟的空闲状态电平,此位对主模式和从模式下的设备都有效。如果 CPOL 被清'0',SCK 引脚在空闲状态保持低电平,即两次传输之间为低电平;如果 CPOL 被置'1',SCK 引脚在空闲状态保持高电平,即两次传输之间为高电平。如果 CPHA (时钟相位) 位被置'1',第一个数据位在 SCK 时钟的第一个时钟边沿被锁存(CPOL 位为 1 时就是下降沿,CPOL 位为 0 时就是上升沿),同时对被接收的第一个数据位进行采样。SPI 在传输的第一个 SCK 时钟转换时改变串行数据(此时时钟向空闲状态的反方向变动),在下一个边沿捕捉数据。

如果 CPHA (时钟相位) 位被清 '0',第一个数据位在 SCK 时钟的第二个时钟边沿被锁存 (CPOL 位为 0 时就是下降沿,CPOL 位为 1 时就是上升沿),同时对被接收的第一个数据位进行采样。SPI 在传输的第一个 SCK 时钟转换时捕捉串行数据(此时时钟向空闲状态的反方向变动),数据在下一个边沿改变。

CPOL 时钟极性和 CPHA 时钟相位的组合选择数据捕捉的时钟边沿。图 217显示了 SPI 传输的 4 种 CPHA 和 CPOL 位组合。此图可以解释为主设备和从设备的 SCK 脚、MISO 脚、MOSI 脚直接连接的主或从时序图。

高速传输

针对高速传输模式下对板级延时的敏感,在 SPI_CCTL 寄存器中由 TXEDGE 和 RXEDGE 控制位对发送相位和接收采样进行时间调整。

- 在从模式下,TXEDGE为1时,发送数据立即发送到数据总线,用于高速模式时(SPBRG = 4);为0时,发送数据在一个有效时钟边沿后发送到数据总线,用于低速模式时(SPBRG > 4)。
- 在主模式下,RXEDGE 为 1 时,在传输数据位的中间采样数据;为 0 时,在传输数据位的尾时钟沿采样数据(用于高速模式)
- 1. 在改变 CPOL/CPHA 位之前,必须清除 SPIEN 位将 SPI 禁止。
- 2. 主和从必须配置成相同的时序模式。
- 3. SCK 的空闲状态必须和 SPI_CCTL 寄存器指定的极性一致 (CPOL 为 1 时,空闲时应上拉 SCK 为高电平; CPOL 为 0 时,空闲时应下拉 SCK 为低电平)。

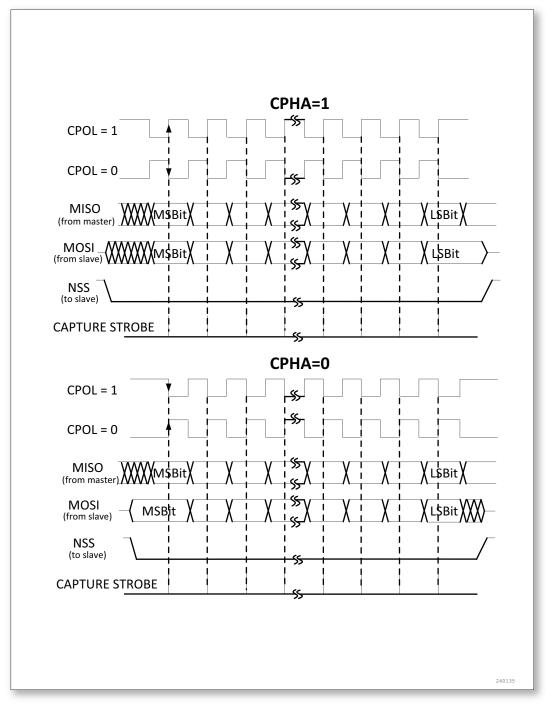


图 217. 数据时钟时序图

数据帧格式

根据 SPI_CCTL 寄存器中的 LSBFE 位,输出数据位时可以 MSB 在先也可以 LSB 在先。根据 SPI_CCTL 寄存器的 SPILEN 位,每个数据帧可以是 7 位或者 8 位。所选择的数据帧格式对发送和/或接收都有效。

另外设置寄存器 SPI_EXTCTL,可以配置数据帧长度为 $1 \sim 32$ 位。使用此配置时需要配置: SPI_GCTL 寄存器的 DW8_32 位为 '0',且 SPI_CCTL 寄存器的 LSBFE 位配置为'1',SPILEN 位配置为'1'。在配合 DMA 数据传输是需要将 DMA 的数据长度配置为 8bit。

23.3.2 SPI 从模式

在从配置里,SCK 引脚用于接收到从主设备来的串行时钟。SPI_SPBRG 寄存器中的设置不影响数据传输速率。

配置步骤

- 1. 设置 SPILEN 位以定义数据帧格式为 7 位或者 8 位
- 2. 选择 CPOL 和 CPHA 位来定义数据传输和串行时钟之间的相位关系。为保证正确的数据传输,从设备和主设备的 CPOL 和 CPHA 位必须配置成相同的方式。
- 3. 帧格式 (MSB 在前还是 LSB 在前取决于 SPI_CCTL 寄存器中的 LSBFE 位) 必须和主设备相同。
- 4. 清除 MDOE 位,设置 SPIEN 位,使相应引脚工作于 SPI 模式下。在这个配置里, MOSI 引脚是数据输入, MISO 引脚是数据输出。

数据发送过程

在写操作中,数据字被并行地写入发送缓冲器。

当从设备收到时钟信号,并且在 MOSI 引脚上出现第一个数据位时,发送过程开始,第一个位被发送出去。余下的位被装进移位寄存器。当发送缓冲器中的数据传输到移位寄存器时,SPI_INTSTAT 寄存器里的 TX_INTF 标志被设置。如果设置了 SPI_INTEN 寄存器上的 TXIEN 位,将会产生中断。

数据接收过程

对于接收方, 当数据接收完成时:

- 移位寄存器中的数据传送到接收缓冲器, SPI_INTSTAT 寄存器中的 RX_INTF 标志被设置。
- 如果设置了 SPI INTEN 寄存器中的 RXIEN 位,则产生中断。

在最后一个采样时钟边沿后,RXNE 位被置'1',移位寄存器中接收到的数据字节被传送到接收缓冲器。当读 SPI RXREG 寄存器时,SPI 设备返回这个值。

23.3.3 SPI 主模式

在主配置时,串行时钟在 SCK 脚产生。

配置步骤

- 1. 通过 SPI SPBRG 寄存器定义串行时钟波特率。
- 2. 选择 CPOL 和 CPHA 位,定义数据传输和串行时钟间的相位关系。
- 3. 设置 SPILEN 位来定义 8 或 7 位数据帧格式。
- 4. 配置 SPI_CCTL 寄存器的 LSBFE 位定义帧格式。
- 5. 如果只接收而不发送数据,配置 SPI RNDNR 寄存器,定义需要接收的字节数。
- 6. 必须设置 MDOE 和 SPIEN 位。

在这个配置中,MOSI 脚是数据输出,而 MISO 脚是数据输入,NSS 是从设备选择信号输出。

数据发送过程

当一字节写进发送缓冲器时,发送过程开始。在发送第一个数据位时,数据字被并行地(通

过内部总线) 传入移位寄存器,而后串行地移出到 MOSI 脚上; MSB 在先还是 LSB 在先,取决于 SPI_CCTL 寄存器中的 LSBFE 位。数据从发送缓冲器传输到移位寄存器时 TX_INTF 标志将被置位,如果设置 SPI_INTEN 寄存器中的 TXIEN 位,将产生中断。

数据接收过程

对于接收器来说, 当数据传输完成时:

- 移位寄存器中的数据传送到接收缓冲器, SPI_INTSTAT 寄存器中的 RX_INTF 标志被设置。
- 如果设置了 SPI_INTEN 寄存器中的 RXIEN 位,则产生中断。

在最后一个采样时钟边沿后,RXNE 位被置'1',移位寄存器中接收到的数据字节被传送到接收缓冲器。当读 SPI RXREG 寄存器时,SPI 设备返回这个值。

如果只接收而不发送数据,在接收完 RXDNR 定义的字节数,RXMATCH_INTF 位被置 '1',表示所有的数据接收完毕,主模式下不再发送时钟信号。

23.3.4 状态标志

为了软件操作的方便,应用程序可以通过 4 个当前状态标志和 7 个中断状态标志来监控 SPI 总线的状态。当前状态标志是只读,由硬件自动置位和清除。中断状态标志位在事件 发生时置位,并在中断使能时产生 CPU 中断,由软件清除。

SPI 内部分别有一个 8 字节的发送缓冲和接收缓冲,根据 SPI_GCTL 的 DW8_32 位的设置,CPU 每次可以读写 1 或者 4 个字节。根据 DW8_32 的设置,发送和接收缓冲分别有一个字节或者一个有效数据的状态标志。

表 60. SPI 状态

分类	状态标志	缓冲器和信号状态		
中断状态	TX_INTF	根据 DW8_32 设置,至少有一个有效数据的空间,		
		能完成一次发送数据寄存器的写操作		
	RX_INTF	根据 DW8_32 设置,至少有一个有效数据的数据,		
		能完成一次接收数据寄存器的读操作		
	UNDERRUN_INTF	发送缓冲器空且重复发送		
	RXOERR_INTF	接收缓冲器非空且被覆盖		
	RXMATCH_INTF	非空,最后一个数据传送到接收缓冲中		
	RXFULL_INTF	接收缓冲器满,不能再接收新的数据		
	TXEPT_INTF	发送缓冲器空,不能再发送		
当前状态	RXAVL_4BYTE	接收缓冲器有超过 4 字节有效数据		
	TXFULL	发送缓冲器满		
	TXEPT	发送缓冲器空		
	RXAVL	接收缓冲器非空,至少还能接收一个字节		

当 SPI_GCTL 寄存器的 TXTLF 为 00 时,发送缓冲器有大于等于 1 个空闲数据空间时 TX_INTF 置位;TXTLF 为 01 时,发送缓冲器有超过一半的空闲空间时 TX_INTF 置位。

当 SPI_GCTL 寄存器的 RXTLF 为 00 时,接收缓冲器有大于等于 1 个有效数据时,RX_INTF 置位;RXTLF 为 01 时,接收缓冲器有超过一半的有效数据时 RX_INTF 置位。

23.3.5 波特率设置

波特率是生成的 SCLK 的频率,一般是 PCLK 的分频。BRG 是一个 16 位的波特率发生器。 SPBREG 寄存器控制 16 位计数器的计数周期。

提供期望的波特率和 f_{polk} (APB 模块的频率),使用下表所示的公式计算出的值近似数赋值给 SPBRG 寄存器。其中下表中的 X 等于 SPBRG 寄存器的值($2 \sim 65535$)。

表 61. 波特率公式

模式	公式	
SPI 模式	波特率 = f _{pclk} /X	

23.3.6 利用 DMA 的 SPI 通信

为了达到最大通信速度,需要及时往 SPI 发送缓冲器填数据,同样接收缓冲器中的数据也必须及时读走以防止溢出。为了方便高速率的数据传输,SPI 实现了一种采用简单的请求/应答的 DMA 机制。

当 SPI_GCTL 寄存器上的 DMAEN 位被设置时, SPI 模块可以发出 DMA 传输数据的请求。 发送缓冲器和接收缓冲器的 DMA 请求都由 DMAEN 使能。

- 发送时,当 SPI_GCTL 寄存器的 TXTLF 为 00 时,发送缓冲器有大于等于 1 个空闲数据空间时即进行 DMA 传输请求; TXTLF 为 01 时,发送缓冲器有超过一半的空闲空间时即进行 DMA 请求。每次请求只进行一次 DMA 传输。每次 DMA 传输数据大小以及发送缓冲器每个数据大小由 DW8_32 为决定。
- 接收时,当 SPI_GCTL 寄存器的 RXTLF 为 00 时,接收缓冲器有大于等于 1 个有效数据时即进行 DMA 传输请求; RXTLF 为 01 时,接收缓冲器有超过一半的有效数据时即进行 DMA 请求。每次请求只进行一次 DMA 传输。每次 DMA 传输数据大小以及接收缓冲器每个数据大小由 DW8_32 为决定。

23.4 寄存器堆和存储器映射描述

表 62. SPI 寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	SPI_TXREG	发送数据寄存器	0x00000000	小节 23.4.1
0x04	SPI_RXREG	接收数据寄存器	0x00000000	小节 23.4.2
0x08	SPI_CSTAT	当前状态寄存器	0x00000001	小节 23.4.3
0x0C	SPI_INTSTAT	中断状态寄存器	0x00000000	小节 23.4.4
0x10	SPI_INTEN	中断使能寄存器	0x00000000	小节 23.4.5
0x14	SPI_INTCLR	中断清除寄存器	0x00000000	小节 23.4.6
0x18	SPI_GCTL	全局控制寄存器	0x00000004	小节 23.4.7
0x1C	SPI_CCTL	通用控制寄存器	0x00000008	小节 23.4.8
0x20	SPI_SPBRG	波特率发生器	0x00000002	小节 23.4.9
0x24	SPI_RXDNR	接收数据个数寄存器	0x00000001	小节 23.4.10
0x28	SPI_NSSR	从机片选寄存器	0x000000FF	小节 23.4.11

Offset	Acronym	Register Name	Reset	Section
0x2C	SPI_EXTCTL	数据控制寄存器	0x00000008	小节 23.4.12

23.4.1 发送数据寄存器(SPI_TXREG)

偏移地址: 0x00

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TXRI	EG							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TXREG														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31:0	TXREG	rw	0x0000	发送数据寄存器(Transmit data register)
			0000	有效数据位由 DW8_32 控制。
				0: 只有低 8 位有效
				1: TXREG[31: 0] 都有效

23.4.2 接收数据寄存器(SPI_RXREG)

偏移地址: 0x04

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							RXR	EG							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RX	REG							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	

Bit	Field	Type	Reset	Description
31:0	RXREG	r	0x0000	接收数据寄存器(Receive data register)
			0000	有效数据位由 DW8_32 控制。
				0: 只有低 8 位有效
				1: RXREG[31: 0] 都有效
				该寄存器可读不可写。

23.4.3 当前状态寄存器(SPI_CSTAT)

偏移地址: 0x08

复位值: 0x0000 0001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved RXFADDR							TXFA	ADDR		RXAVL_ 4BYTE	- TXFULL	RXAVL	TXEPT	
				r	r	r	r	r	r	r	r	r	r	r	r

Bit	Field	Туре	Reset	Description
31:12	Reserved			始终读为 0。
11:8	RXFADDR	r	0x00	当前接收缓冲器中有效数据个数
7:4	TXFADDR	r	0x00	当前发送缓冲器中有效数据个数
3	RXAVL_4BYTE	r	0x00	接收缓冲器中有效数据达到 4 个字节标志位(Receive
				available 4 byte data message)
				1:接收缓冲器中有超过4个字节
				0:接收缓冲器中数据小于4个字节
2	TXFULL	r	0x00	发送缓冲器满标志位(Transmitter FIFO full status bit)
				1: 发送缓冲器满
				0:发送缓冲器未满
1	RXAVL	r	0x00	接收有效字节数据信息位(Receive available byte data
				message)
				当接收端缓冲器接收了一个完整字节的数据时置位该位。
				1:接收端缓冲器已经接收了一个有效字节数据
				0:接收端缓冲器空
				该位只读,由硬件自动置位和清除。
0	TXEPT	r	0x01	发送端空位(Transmitter empty bit)
				1:发送端缓冲器和发送移位寄存器为空
				0:发送端不为空
				该位只读,由硬件自动置位和清除。

23.4.4 中断状态寄存器(SPI_INTSTAT)

偏移地址: 0x0C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Res	erved					TXEPT_ INTF	RXFULL _INTF	RX MATCH _INFT	RXO ERR_ INFT	UNDE RRUN _INTF	RX_ INTF	TX_ INTF
									r	r	r	r	r	r	r

Bit	Field	Туре	Reset	Description
31:7	Reserved			始终读为 0。
6	TXEPT_INTF	r	0x00	发送端空中断标志位(Transmitter empty interrupt flag bit) 硬件自动置位,写 INTCLR 寄存器 TXEPT_ICLR 位清除。 1:发送端缓冲器和 TX 移位寄存器为空 0:发送端不为空 注意:该位是中断状态信号,TXEPT 是状态信号。
5	RXFULL_INTF	r	0x00	接收端缓冲器满中断标志位(RX FIFO full interrupt flag bit) 硬件自动置位,写 INTCLR 寄存器 RXFULL_ICLR 位清除。 1:RX 缓冲器满 0:RX 缓冲器未满
4	RXMATCH_ INTF	r	0x00	接收指定字节数中断标志位(Receive data match the RXDNR number, the receive process will be completed and generate the interrupt) 硬件自动置位,写 INTCLR 寄存器 RXMATCH_ICLR 位清除。 1:接收了 RXDNR 寄存器指定的字节数 0:未完成 RXDNR 寄存器指定的字节数
3	RXOERR_ INTF	r	0x00	接收端溢出错误中断标志位(Receive overrun error interrupt flag bit) 硬件自动置位,写 INTCLR 寄存器 RXOERR_ICLR 位清除。 1:溢出错误 0:没有溢出错误
2	UNDERRUN_ INTF	r	0x00	SPI 从机模式下溢标志位(SPI underrun interrupt flag bit) 硬件自动置位,写 INTCLR 寄存器 UNDERRUN_ICLR 位清除。 1:下溢错误 0:没有下溢错误

Bit	Field	Туре	Reset	Description
1	RX_INTF	r	0x00	接收端数据有效中断标志位(Receive data available inter-
				rupt flag bit)
				硬件自动置位,写 INTCLR 寄存器 RX_ICLR 位清除。
				当接收端缓冲器接收了一个完整字节数据。
				1:接收端缓冲器有有效字节数据
				0:接收端缓冲器空
0	TX_INTF	r	0x00	发送缓冲器有效中断标志位(发送了一个字节的数
				据)(Transmit FIFO available interrupt flag bit)
				硬件自动置位,发送缓冲器不为空自动清零。
				1: 发送端缓冲器有效发送
				0:发送端缓冲器无效发送

23.4.5 中断使能寄存器(SPI_INTEN)

偏移地址: 0x10

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved					TXEPT_ IEN	RXFULL _IEN	RX MATCH _IEN	RXO ERR_ IEN	UNDE RRUN _IEN	RX_ IEN	TX_ IEN
									rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31:7	Reserved			始终读为 0 。
6	TXEPT_IEN	rw	0x00	发送端空中断使能位 (Transmit empty interrupt enable bit) 1:中断使能 0:禁止中断
5	RXFULL_IEN	rw	0x00	接收端缓冲器满中断使能位(Receive FIFO full interrupt enable bit) 1:中断使能 0:禁止中断
4	RXMATCH_ IEN	rw	0x00	接收指定字节数中断使能位 (Receive data complete interrupt enable bit) 1:中断使能 0:禁止中断
3	RXOERR_ IEN	rw	0x00	接收端溢出错误中断使能位(Overrun error interrupt enable bit) 1:中断使能 0:禁止中断

Bit	Field	Туре	Reset	Description
2	UNDERRUN_	rw	0x00	SPI 从机模式下溢中断使能位(SPI 从机模式)(Transmitter
	IEN			underrun interrupt enable bit(SPI slave mode only))
				1:中断使能
				0:禁止中断
1	RX_IEN	rw	0x00	接收端数据中断使能位(Receive FIFO interrupt enable
				bit)
				1:中断使能
				0:禁止中断
0	TX_IEN	rw	0x00	发送缓冲器空中断使能位(Transmit FIFO empty interrupt
				enable bit)
				1:中断使能
				0:禁止中断

23.4.6 中断清除寄存器(SPI_INTCLR)

偏移地址: 0x14

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved									TXEPT_ ICLR	RXFULL _ICLR	RX MATCH _ICLR	RXO ERR_ ICLR	UNDE RRUN _ICLR	RX_ ICLR	TX_ ICLR
									w	W	w	W	w	w	r

Bit	Field	Туре	Reset	Description
31:7	Reserved			始终读为 0。
6	TXEPT_ICLR	W	0x00	发送端空中断清除位(Transmitter empty interrupt clear
				bit)
				1:中断清除
				0:中断没有清除
5	RXFULL_ICLR	W	0x00	接收端缓冲器满中断清除位(Receiver buffer full interrupt
				clear bit)
				1:中断清除
				0:中断没有清除
4	RXMATCH_	W	0x00	接收指定字节数中断清除位(Receive completed interrupt
	ICLR			clear bit)
				1:中断清除
				0:中断没有清除

Bit	Field	Туре	Reset	Description
3	RXOERR_	W	0x00	接收端溢出错误中断清除位(Overrun error interrupt clear
	ICLR			bit)
				1: 中断清除
				0: 中断没有清除
2	UNDERRUN_	W	0x00	SPI 从机模式下溢中断清除位(SPI 从机模式)(Transmitter
	ICLR			underrun interrupt clear bit (SPI slave mode only))
				1:中断清除
				0:中断没有清除
1	RX_ICLR	W	0x00	接收端数据中断清除位(Receive interrupt clear bit)
				1:中断清除
				0:中断没有清除
0	TX_ICLR	r	0x00	发送缓冲器空中断清除位(Transmitter FIFO empty inter-
				rupt clear bit)
				1:中断清除
				0:中断没有清除

23.4.7 全局控制寄存器 (SPI_GCTL)

偏移地址: 0x18

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ı	Reserved		NSS TOG	DW8_ 32	NSS	DMAEN	TXT	TLF	RX	TLF	RXEN	TXEN	MODE	INTEN	SPIEN
			rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31:13	Reserved			始终读为 0。
12	NSSTOG	ΓW	0x00	从设备选择信号自动翻转(Slave select toggle) 1: NSS 信号在传输完每个数据后自动翻转 0: NSS 信号不翻转 注: 该位只在主模式下有效
11	DW8_32	rw	0x00	发送和接收数据寄存器有效数据选择(Valid byte or doubleword data select signal) 0: 只有低 8 位有效 1: 32 位数据都有效 注: 不管是通过 CPU 还是 DMA 都必须用指定数据格式访问。

Bit	Field	Туре	Reset	Description
10	NSS	rw	0x00	硬件或软件控制主模式下的 NSS 输出(NSS select signal
				that from software or hardware)
				0:由 NSSR 寄存器值控制
				1: 进行数据传输时硬件自动控制
9	DMAEN	rw	0x00	接收和发送的 DMA 模式使能 (DMA access mode enable)
				0: DMA 模式禁止
				1: DMA 模式使能
8:7	TXTLF	rw	0x00	发送缓冲器触发 DMA 请求的边沿选择(TX FIFO trigger
				level bit)
				00: 发送缓冲器有大于等于 1 个空闲数据空间时即进行
				DMA 请求或发送中断请求
				01: 发送缓冲器有超过一半的空闲空间时即进行 DMA 请
				求或发送中断请求
				1x: 保留
				注: 当 DW8_32 为 0 时,一个数据空间代表 1 个字节;为
				1时,一个数据空间代表 4 字节。
6:5	RXTLF	rw	0x00	接收缓冲器触发 DMA 请求的边沿选择(RX FIFO trigger
				level bit)
				00:接收缓冲器有大于等于 1 个有效数据时即进行 DMA 请
				求或接收中断请求
				01:接收缓冲器有超过一半的有效数据时即进行 DMA 请
				求或接收中断请求 1x : 保留
				1x: 休亩 注: 当 DW8 32 为 0 时,一个有效数据代表 1 个字节;为
				1 时,一个有效数据代表 4 字节。
4	RXEN	rw	0x00	接收使能位(Receive enable bit)
7	TOLLIV	1 **	OXOO	1:接收使能
				0:接收禁止。同时可以清空 RX 缓冲器
				注意: 当 SPI 只工作在主机接收模式时,txen 必须设置为
				0.
3	TXEN	rw	0x00	发送使能位(Transmit enable bit)
				1: 发送使能
				0:发送禁止。同时可以清空 TX 缓冲器
				注意: 当在主机模式下发送和接收同时发生。
2	MODE	rw	0x01	主机模式位(Master mode bit)
				1: 主机模式(由内部 BRG 产生串行时钟)
				0:从机模式(串行时钟来自外部主机)
1	INTEN	rw	0x00	SPI 中断使能位(SPI interrupt enable bit)
				1: 使能 SPI 中断
				0:禁止 SPI 中断

Bit	Field	Туре	Reset	Description
0	SPIEN	rw	0x00	SPI 选择位(SPI select bit)
				0:SPI 禁止(复位状态)
				1 : SPI 使能

23.4.8 通用控制寄存器 (SPI_CCTL)

偏移地址: 0x1C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved									CPH ASEL	TX EDGE	RX EDGE	SPI LEN	LSB FE	CPOL	СРНА
									rw	rw	rw	rw	rw	rw	rw

Bit	Field	Type	Reset	Description
31:7	Reserved			始终读为 0。
6	CPHASEL	rw	0x00	CPHA 寄存器极性选择(CPHA polarity select) 1: CPHA 为 1 时表示第一个数据位采样从第二个时钟边沿开始 0: CPHA 为 0 时表示第一个数据位采样从第一个时钟边沿开始
5	TXEDGE	rw	0x00	发送数据相位调整位(从模式)(Transmit data edge select) 1:发送数据立即发送到数据总线 可用于高速模式时(SPBRG = 4)。 0:发送数据在一个有效时钟边沿后发送到数据总线 可用于低速模式时(SPBRG > 4)。
4	RXEDGE	rw	0x00	接收数据采样时钟沿选择位(主模式)(Receive data edge select) 1:在传输数据位的尾时钟沿采样数据(用于高速模式) 0:在传输数据位的中间采样数据
3	SPILEN	rw	0x01	SPI 数据宽度位(SPI character length bit) 该位在 DW8_32 置位后(DW8_32=0)配置后起作用。 1:8 位数据(缺省) 0:7 位数据
2	LSBFE	rw	0x00	LSBFE: LSB 在前使能位(LSI first enable bit) 1:数据传输或接收最低位在前 0:数据传输或接收最高位在前
1	CPOL	rw	0x00	时钟极性标志位(Clock polarity select bit) 1:时钟在空闲状态为高电平(两次传输之间) 0:时钟在空闲状态为低电平(两次传输之间)

Bit	Field	Туре	Reset	Description
0	СРНА	rw	0x00	时钟相位选择位(Clock phase select bit)
				1:第一个数据位采样从第一个时钟边沿开始
				0:第一个数据位采样从第二个时钟边沿开始

23.4.9 波特率发生器(SPI_SPBRG)

偏移地址: 0x20

复位值: 0x0000 0002

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
4-	4.4	40	40	4.4	4.0	•		_		_					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							SPI	BRG							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31:16	Reserved			始终读为 0。
15:0	SPBRG	rw	0x0002	SPI 波特率控制寄存器用于产生波特率(SPI baud rate con-
				trol register for baud rate)
				波特率公式:
				波特率 = f _{pclk} /SPBRG
				(f _{pclk} /是 APB 时钟频率)
				注意:不要往该寄存器写 0 和 1。

23.4.10 接收数据个数寄存器(SPI_RXDNR)

偏移地址: 0x24

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RX	DNR							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31:16	Reserved			始终读为 0。

Bit	Field	Туре	Reset	Description
15:0	RXDNR	rw	0x0001	该寄存器用于存储下次接收过程需要接收字节的个数
				(The register is used to hold a count of to be received
				bytes in next receive process)
				该寄存器的值在 SPI 为主机接收模式下有效。缺省值是 1。
				该寄存器值通过 MCU 写值改变。
				注意:不要往该寄存器写'0'值。

23.4.11 从机片选寄存器(SPI_NSSR)

偏移地址: 0x28

复位值: 0x0000 00FF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved NSS

rw

Bit	Field	Туре	Reset	Description
15:1	Reserved			
0	NSS	rw	0x01	主模式下片选输出信号。低有效,从模式下该位无效(Chip
				select output signal in Master mode).
				0: 从器件被选中
				1: 从器件未选中

23.4.12 数据控制寄存器(SPI_EXTCTL)

偏移地址: 0x2C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved										E	XTLEN			
											rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31:5	Reserved			始终读为 0。

Bit	Field	Туре	Reset	Description
4: 0	EXTLEN	rw	0x08	控制 SPI 数据长度
				0 0000: 32 bit
				0 0001: 1 bit
				0 0010: 2 bit
				0 0011: 3 bit
				1 1100: 28 bit
				1 1101: 29 bit
				1 1110: 30 bit
				1 1111: 31 bit
				注: 仅当 SPI_GCTL 寄存器 DW8_32 位为 '0' 时有效, 且
				SPI_CCTL 寄存器的 LSBFE 位必须配置为'1', SPILEN
				位也必须配置为'1'。

24 I2C 接口 (I2C)

I2C 接口 (I2C)

24.1 I2C 简介

I2C(芯片间)总线接口连接微控制器和串行 I2C总线。它提供多主机功能,控制所有 I2C 总线特定的时序、协议、仲裁和定时。

I2C 总线是一个两线串行接口,其中两线位串行数据(SDA)和串行时钟(SCL)线在连 接到总线器件间传递信息。每个器件都有一个唯一的地址识别,而且都可以作为一个发送 或接收器。除了发送器和接收器外,器件在执行数据传输时也可以被看做是主机或者从机。 主机是初始化总线的数据传输并产生允许传输的时钟信号的器件。此时,任何被寻址的器 件都被认为是从机。

I2C 可以工作在标准模式(数据传输速率为0~100 Kbps),快速模式(数据传输速率最大 为 400 Kbps)。

24.2 I2C 主要特征

- 并行总线 I2C 总线协议转换器
- 半双工同步操作
- 支持主从模式
- 支持 7 位地址和 10 位地址
- 支持标准模式 100 Kbps, 快速模式 400 Kbps
- 产生 Start、Stop、重新发 Start、应答 Acknowledge 信号检测
- 在主模式下只支持一个主机
- 分别有 2 字节的发送和接收缓冲
- 在 SCLI 和 SDAI 上增加了无毛刺电路
- 支持 DMA 操作
- 支持中断和查询操作

24.3 I2C 协议

24.3.1 起始和停止条件

当总线处于空闲状态时,SCL 和 SDA 同时被外部上拉电阻拉为高电平。当主机启动数据 传输时,必须先产生一个起始条件。在 SCL 线是高电平时, SDA 线从高电平向低电平切 换表示起始条件。当主机结束传输时要发送停止条件。在 SCL 线是高电平, SDA 线由低 电平向高电平切换表示停止条件。下图显示了起始和停止条件的时序图。数据传输过程中, 当 SCL 为 1 时, SDA 必须保持稳定。

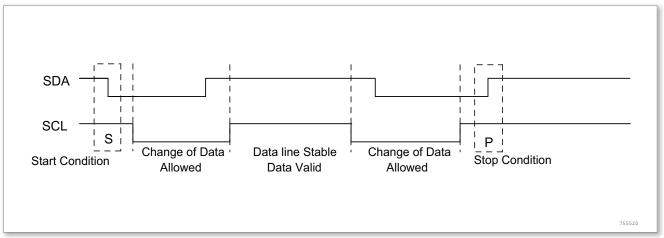


图 218. 起始和停止条件

24.3.2 从机寻址协议

I2C 有两种地址格式: 7位的地址格式和 10位的地址格式。

7 位的地址格式

下图中显示在起始条件(S)后发送的一个字节的前7位(bit 7:1)为从机地址,最低位(bit 0)是数据方向位,当 bit 0为0,表示主机写数据到从机,1表示主机从从机读数据。

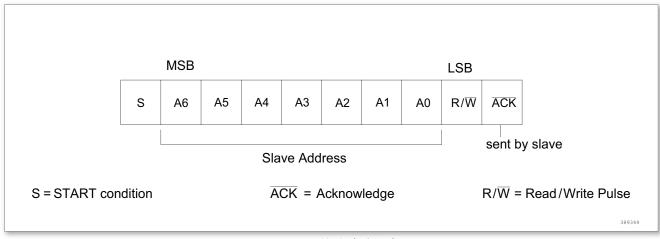


图 219. 7 位的地址格式

10 位的地址格式

在 10 位的地址格式中,发送 2 个字节来传输 10 位地址。发送的第一个字节的位的描述如下: 第一个 5 位(bit 7: 3) 用于告示从机接下来是 10 位的传输。第一个字节的后两个字节(bit 2: 1) 位从机地址的 bit 9: 8,最低位(bit 0) 是数据方向位(R/W)。传输的第二个字节为 10 位地址的低八位。

具体如下图所示:

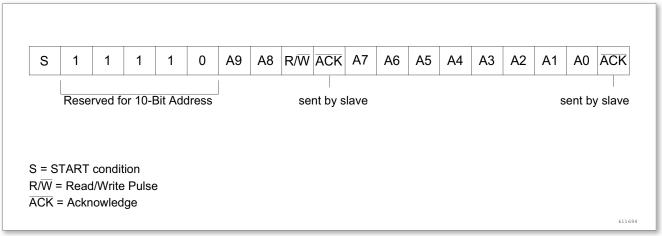


图 220. 10 位的地址格式

下表定义了 I2C 首字节的特殊用途和保留地址:

表 63. I2C 首字节

从机地址	R/W 位	描述				
0000 000	0	广播呼叫地址。I2C 将数据放入接收缓冲,并产生一个广播呼叫中断				
000 000	1	起始字节				
0000 001	X	CBUS 地址。I2C 接口忽略该访问				
0000 010	X	保留				
0000 011	X	保留				
0000 1xx	X	保留				
1111 1xx	X	保留				
1111 0xx	X	10 位从机寻址				

24.3.3 发送和接收协议

主机初始化数据传输并且从总线上发送或接收数据,作为主发送或者主接收。从机响应主机的请求来发送或接收数据,作为从发送或从接收器。

主发送和从接收

所有数据都是以字节格式传输,且不限制每次传输的字节数。当主机发送完地址和 R/W 位或者主机发送一个字节的数据到从机上,从接收器必须产生一个响应信号(ACK)。当从接收器不能产生 ACK 响应信号,主机将会产生一个停止条件中止传输。从机不能响应时,必须释放 SDA 为高电平才能使得主机产生停止条件。

当主发送器传输数据如下图所示,从接收器在接收到的每个字节后产生一个 ACK 来响应主发送器。

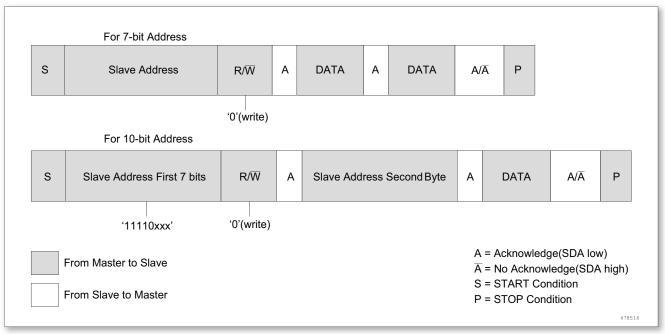


图 221. 主发送协议

主接收和从发送

当主机接收数据如下图所示,主机必须在每次接收到一个字节数据后响应从发送器,除了最后一个字节。通过这种方式,主接收器能通知从发送器是否是最后一个字节。从发送器在检测到 NACK 时必须释放 SDA,这样主机可以产生停止条件。

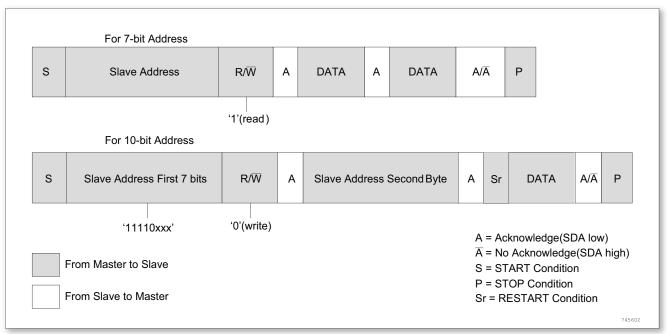


图 222. 主接收协议

当主机不想产生停止条件而释放总线,可以产生一个重复起始条件。重复起始条件与起始条件相同,只是它是在 ACK 后产生。工作在主机模式下,I2C 接口可以使用不同的传输方向与相同的从机通信。

起始字节传输协议

起始字节传输协议是用来给没有专用的 I2C 硬件模块的系统使用。当 I2C 模块作为主机时,在每次传输开始可以给需要的从机产生起始字节输出。

该协议由 7 个 0 以及一个 1 组成,如下图所示。处理器可以在地址阶段用低速采样 0 来查询总线。一旦检测到 0,处理器可以从低速采样切换到主机的正常速率。

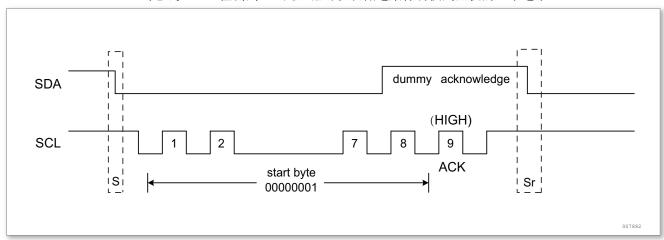


图 223. 起始字节传输

起始字节程序流程如下:

- 1. 主机产生一个起始条件
- 2. 主机发送起始字节(0000 0001)
- 3. 主机发送 ACK 时钟脉冲 (ACK)
- 4. 没有从机响应 ACK 信号
- 5. 主机产生重复起始条件(RESTART)

硬件 I2C 接收器不需要响应开始字节,因为这是一个保留地址,而且地址会在 RESTART 后复位。

24.3.4 发送缓冲管理以及起始、停止和重复起始条件产生

当工作在主机模式,每当发送为空时 I2C 模块就在总线上产生一个停止条件。如果重复起始产生功能使能(RESTART = 1),则传输方向从读变为写或者写变为读时产生重复起始条件。如果没有使能重复起始条件,则会在停止条件后产生一个起始条件。

下图显示了 DR 寄存器的位。

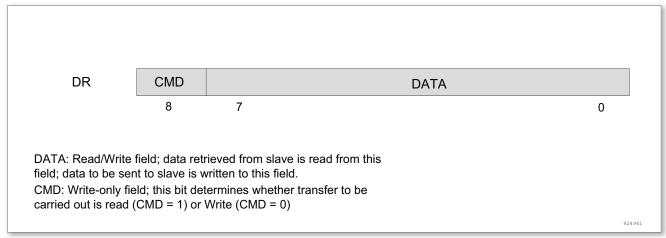


图 224. DR 寄存器

下面的时序图描述了 I2C 模块工作在主发送模式下 Tx FIFO 变为空时行为。

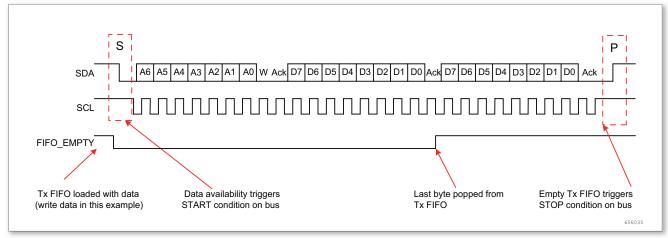


图 225. 主发送 - Tx FIFO 为空

下面的时序图描述了 I2C 模块工作在主接收模式下当 Tx FIFO 变为空时行为。

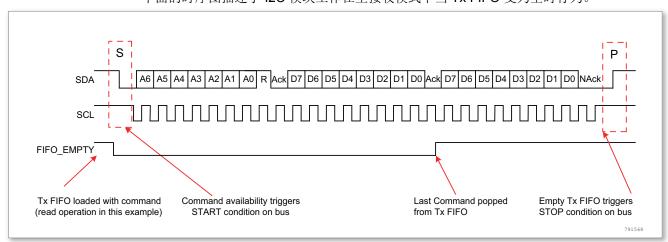


图 226. 主接收 - Tx FIFO 为空

24.3.5 多个主机仲裁

I2C 总线是一个多主机的总线。仲裁是一个在有多个主机同时尝试控制总线,但只允许其中一个控制总线并使报文不被破坏的过程。一旦其中一个主机已经控制了总线,那么直到

该主机发送一个停止条件并且将总线释放为空闲状态时,其他主机才能控制总线。

当 SCL 线是高电平时,仲裁在 SDA 线发生。如果两个或多个主机尝试发送信息到总线,在 其他主机都产生"0"的情况下,首先产生一个"1"的主机将丢失仲裁。丢失仲裁的主机可以 继续产生时钟脉冲直到字节传输结束。如果每个主机都尝试寻址相同的器件,仲裁会继续 在数据阶段进行。

检测到丢失仲裁后, I2C 接口会停止产生 SCL 信号。

下图显示了两个主机的仲裁的总线时序

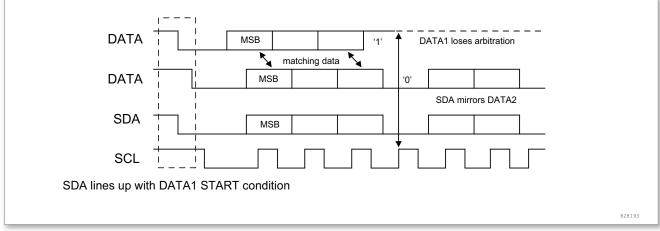


图 227. 多个主机仲裁

24.3.6 时钟同步

当两个或多个主机试图同时在总线传输信息时,他们必须仲裁和同步 SCL 时钟。所有的主机产生自己的时钟来传输消息。数据只在时钟的高电平有效。时钟同步是通过 SCL 信号的线 '与'连接进行的。当主机把 SCL 时钟变成 0,主机会计算 SCL 低电平的时间,在下一个时钟周期开始把 SCL 时钟变成 1。但是,假如另一个主机把 SCL 保持为 0,那么这个主机会进入等待状态直到 SCL 时钟变为 1。

所有的主机会计算它们的高电平时间,最短高电平时间的主机会把 SCL 变为 0。接下来主机会计算低电平时间,最长低电平时间的主机会强制其他主机进入等待状态。这样就产生一个同步后的 SCL 时钟,如下图所示。

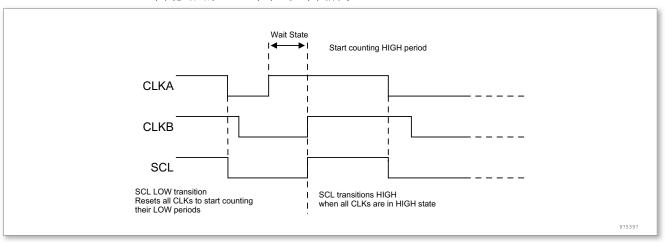


图 228. 多个主机时钟同步

24.4 I2C 工作模式

I2C 接口可以以下述 4 种方式中的一种运行:

- 从发送器模式
- 从接收器模式
- 主发送器模式
- 主接收器模式

注: I2C 接口模块只能工作在主机模式或者从机模式,但不能同时工作在两种模式下。因此要确保寄存器 CR 中位 6 (DISSLAVE) 和位 0 (MASTER) 不能分别设置为 0 和 1 (或者分别为 1 和 0)。 I2C 功能框图如下:

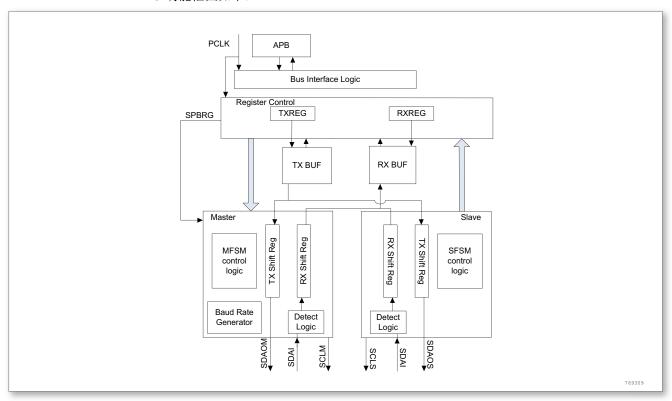


图 229. I2C 功能框图

24.4.1 从模式

下面介绍从模式的程序流程图

初始化配置

- 1. 写 0 到 ENR 寄存器位 0 禁止 I2C。
- 2. 通过初始化 SAR 寄存器来配置从机地址。该地址为 I2C 接口所响应的地址。
- 3. 配置 CR 寄存器指定地址格式(设置 bit 3 来选择 7 位或 10 位地址格式)。写 0 到寄存器 CR 寄存器的位 6 (DISSLAVE) 和写 0 到位 0 (MASTER)。
- 4. 写 1 到 ENR 寄存器中位 0 来使能 I2C 接口模块。

从发送的单字节操作

当 I2C 接口被其他 I2C 主机寻址并请求数据的时候, I2C 接口工作在从发送模式, 步骤如

下:

- 1. 其他 I2C 主机器件初始化 I2C 传输,发送地址与 SAR 寄存器中的从机地址匹配。
- 2. I2C 接口响应发送的地址,识别传输的方向是工作在从发送模式。
- 3. I2C 接口产生 RD_REQ 中断 (寄存器 RAWISR 位 5),并且将 SCL 线拉低。总线一直处于等待状态直到软件响应。

如果 RD_REQ 中断被屏蔽(寄存器 IMR[5] = 0), 建议 CPU 定期查询 RAWISR 寄存器。

- 1. RAWISR 位 5 置位等效于产生了一个 RD REQ 中断。
- 2. 软件必须满足 I2C 传输的要求。
- 3. 时间间隔通常在 10 个 SCL 时钟周期左右。例如,对于 400kbps,时间间隔是 25us。
- 4. 如果在接收读请求之前 Tx FIFO 仍然有数据,I2C 接口就会产生一个 TX_ABRT 中断 (RAWISR[6]),清空 Tx FIFO 中的数据。
- 5. 软件写数据到 DR 寄存器 (其中位 8 设置为 0)。
- 6. 软件必须先清除 RAWISR 寄存器 RD REQ 和 TX ABRT 中断 (分别为 bit5, 6)
- 7. I2C 接口释放 SCL, 并发送数据字节。
- 8. 主机器件发送重复起始条件控制总线或者发送停止条件释放总线。

从接收的单字节操作

当其他主机器件寻址 I2C 接口并且发送数据, I2C 接口工作在从接收模式,步骤如下:

- 1. 其他 I2C 主机器件初始化 I2C 传输,发送地址与 SAR 寄存器中的从机地址匹配。
- 2. I2C 接口响应发送的地址,识别传输的方向是工作在从接收模式。
- 3. I2C 接口收到主机发送的数据并将数据存储在接收缓冲中。
- 4. I2C 接口产生 RX_FULL 中断(RAWISR[2]). 如果 RX_FULL 中断被屏蔽(IMR[2] = 0), 建议软件定期查询 SR 寄存器中。读到 SR 寄存器位 3(RFNE)为 1 时等效于 RX FULL 中断产生。
- 5. 软件通过读 DR 寄存器中的 bit 7:0 来获得接收到的数据。
- 6. 主机器件发送重复起始条件控制总线或者发送停止条件释放总线。

从机的块传输操作

标准的 I2C 协议中,所有的数据处理都是单个字节的处理,程序通过写一个字节到从机的 Tx FIFO 响应主机的读请求。当一个从机(从发送)接收到主机(主接收)的读请求 (RD_REQ) 时,最少有一个数据放到从发送的 Tx FIFO。这个 I2C 接口模块可以处理 x FIFO 中有多个数据,所以接下来的读请求不需要再产生中断来取数据。最终,这极大的减少了因为每次数据中断导致等待时间。

该模式仅存在当 I2C 接口作为从发送模式。如果主机发送响应从发送传输的数据,从机的 TX FIFO 中没有数据,I2C 接口将拉低 I2C 总线的 SCL 线直到读请求中断 (RD_REQ) 产生并且 TX FIFO 的数据准备好后才释放 SCL 线。

如果 RX_REQ 中断被屏蔽(ISR[5] = 0),软件可以定期查询读 RAWISR 寄存器。当读到 RAWISR[5] 返回为 1 等效于产生了 RX_REQ 中断。

RD_REQ 中断由于读请求产生,像中断一样必须退出中断服务程序(ISR)时清除。在中断服务程序中(ISR)可以写一个或多个字节的数据到 TX FIFO。在这些字节传输给主机的过程中,如果主机响应了最后一个字节,从机将必须再次产生 RD_REQ 中断请求。这是因为主机要求更多的数据。

如果主机接收了来自 I2C 接口的 n 字节,但是程序写到 Tx FIFO 中的数据个数大于 n,从 机在完成要求的 n 字节的数据发送后,将会清空 Tx FIFO 并且忽略额外的字节。

24.4.2 主模式

初始化配置

- 1. 通过设置 ENR[0] = 0 来禁止 I2C 接口
- 2. 配置 CR 寄存器的 bit 2:1 设置 I2C 工作的速率模式(标准模式、快速模式)。同时确保 bit 6 (DISSLAVE) 为 1,且 bit 0 (MASTER) 为 1。
- 3. 往 TAR 寄存器写入 I2C 器件地址。设置该寄存器可配置为广播地址或起始字节命令。
- 4. 置位 ENR[0] 使能 I2C 接口。
- 5. 将传输的数据以及传输方向写入到 DR 寄存器中。如果在使能 I2C 接口之前配置了 DR 寄存器,数据和命令都会丢失,这是因为在 I2C 接口禁止的情况下缓冲是清空的。
- 以上的步骤将会使得 I2C 接口产生一个起始条件并发送地址字节数据到 I2C 总线上。

主发送和主接收

I2C 接口支持读写的动态切换。当发送数据时,写数据到 I2C RX/TX 数据缓冲和命令寄存器的低字节中(DR),配置 CMD 位为 0 产生写操作。接下来的读命令,不需要设置 DR 寄存器的低字节,只需要确保 CMD 位为 1。如果发送 FIFO 为空,I2C 模块拉低 SCL 直到下个命令写入到发送 FIFO 中。

程序流程图

下面的流程图为 I2C 接口作为主机的程序示例:

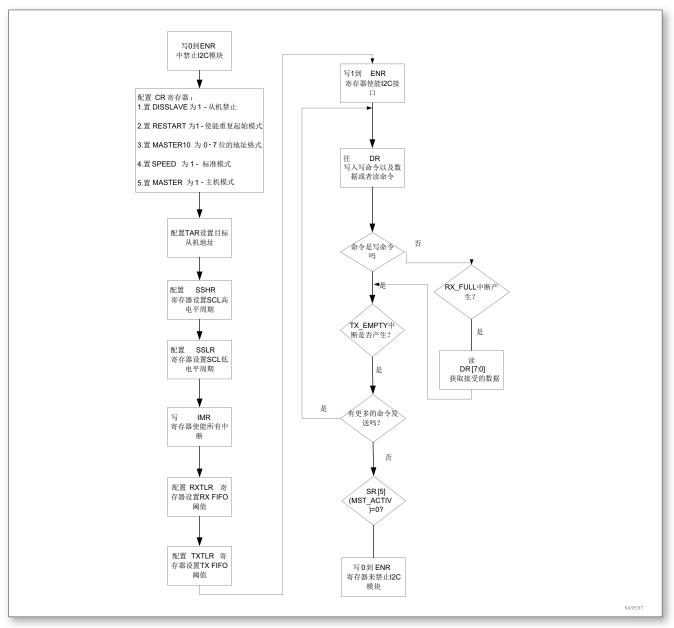


图 230. I2C 接口主机流程图

24.4.3 I2C 中止传输

ENR 寄存器中的 ABRT 控制位允许软件在完成 TX FIFO 中传输命令之前放弃 I2C 总线。作为 ABORT 请求的响应,I2C 模块发出一个停止条件到 I2C 总线,同时清空 TX FIFO。中止传输操作值允许在主模式下。

程序流程

- 1. 停止往 Tx FIFO (DR) 中写新的命令
- 2. 如果工作在 DMA 模式中,置 TDMAE = 0 禁止发送 DMA。
- 3. 置 ENR 寄存器 ABRT 位为 1
- 4. 等待 TX_ABRT 中断

24.5 利用 DMA 通信

I2C 接口支持用 DMA 来发送和接收数据。通过设置 DMA 寄存器中的对应位可以单独开启 DMA 发送或者 DMA 接收。发送时数据寄存器变空或接收时数据寄存器变满,则产生 DMA 请求必须在当前字节传输结束之前被响应。

利用 DMA 发送

通过设置 DMA 寄存器的 TXEN 位可以激活 DMA 发送模式。为 I2C 分配好 DMA 通道后, 当发送数据时, DMA 控制器会将数据从预置的存储区装载进 DR 寄存器。

利用 DMA 接收

通过设置 DMA 寄存器的 RDMAE 位可以激活 DMA 接收模式。为 I2C 分配好 DMA 通道后,当每次接收到数据字节时, DMA 控制器会将数据从 DR 寄存器中传送到预置的存储区。

24.6 I2C 中断

下表列出了 I2C 的中断位以及它们的设置和清除方式。部分位由硬件置位并由软件清除;另一部分位由硬件置位和清除。

表 64. 中断位的置位和清除

中断位	硬件置位/软件清除	硬件置位和清除
GEN_CALL	√	Х
START_DET	√	х
STOP_DET	√	х
ACTIVITY	√	x
RX_DONE	V	x
TX_ABRT	√	x
RD_REQ	√	x
TX_EMPTY	x	√
TX_OVER	√	x
RX_FULL	x	√
RX_OVER	√	x
RX_UNDER	√	Х

下图描述了中断寄存器中,中断位被硬件置位和软件清除的操作

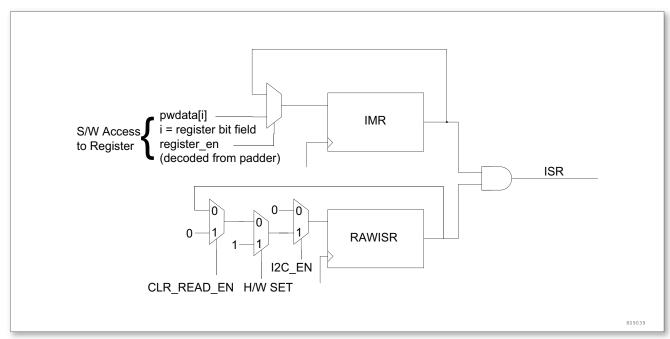


图 231. 中断机制

24.7 I2C 寄存器描述

表 65. I2C 寄存器描述概览

Offset	Acronym	Register Name	Reset	Section
0x00	I2C_CR	I2C 控制寄存器	0x0000007F	小节 24.7.1
0x04	I2C_TAR	I2C 目标地址寄存器	0x00000055	小节 24.7.2
0x08	I2C_SAR	I2C 从机地址寄存器	0x00000055	小节 24.7.3
0x10	I2C_DR	I2C 数据命令寄存器	0x0000001	小节 24.7.4
0x14	I2C_SSHR	标准模式 I2C 时钟高电平计数寄存	0x00000190	小节 24.7.5
		器		
0x18	I2C_SSLR	标准模式 I2C 时钟低电平计数寄存	0x000001D6	小节 24.7.6
		器		
0x1C	I2C_FSHR	快速模式 I2C 时钟高电平计数寄存	0x00000036	小节 24.7.7
		器		
0x20	I2C_FSLR	快速模式 I2C 时钟低电平计数寄存	0x00000082	小节 24.7.8
		器		
0x2C	I2C_ISR	I2C 中断状态寄存器	0x00000000	小节 24.7.9
0x30	I2C_IMR	I2C 中断屏蔽寄存器	0x000008FF	小节 24.7.10
0x34	I2C_RAWISR	I2C RAW 中断寄存器	0x00000000	小节 24.7.11
0x38	I2C_RXTLR	I2C 接收阈值	0x00000000	小节 24.7.12
0x3C	I2C_TXTLR	I2C 发送阈值	0x00000000	小节 24.7.13
0x40	I2C_ICR	I2C 组合和独立中断清除寄存器	0x00000000	小节 24.7.14
0x44	I2C_RX_UNDER	I2C 清除 RX_UNDER 中断寄存器	0x00000000	小节 24.7.15

Offset	Acronym	Register Name	Reset	Section
0x48	I2C_RX_OVER	I2C 清除 RX_OVER 中断寄存器	0x00000000	小节 24.7.16
0x4C	I2C_TX_OVER	I2C 清除 TX_OVER 中断寄存器	0x00000000	小节 24.7.17
0x50	I2C_RD_REQ	I2C 清除 RD_REQ 中断寄存器	0x00000000	小节 24.7.18
0x54	I2C_TX_ABRT	I2C 清除 TX_ABRT 中断寄存器	0x00000000	小节 24.7.19
0x58	I2C_RX_DONE	I2C 清除 RX_DONE 中断寄存器	0x00000000	小节 24.7.20
0x5C	I2C_ACTIV	I2C 清除 ACTIVITY 中断寄存器	0x00000000	小节 24.7.21
0x60	I2C_STOP	I2C 清除 STOP_DET 中断寄存器	0x00000000	小节 24.7.22
0x64	I2C_START	I2C 清除 START_DET 中断寄存器	0x00000000	小节 24.7.23
0x68	I2C_GC	I2C 清除 GEN_CALL 中断寄存器	0x00000000	小节 24.7.24
0x6C	I2C_ENR	I2C 使能寄存器	0x00000000	小节 24.7.25
0x70	I2C_SR	I2C 状态寄存器	0x00000006	小节 24.7.26
0x74	I2C_TXFLR	I2C 发送缓冲水平寄存器	0x00000000	小节 24.7.27
0x78	I2C_RXFLR	I2C 接收缓冲水平寄存器	0x00000000	小节 24.7.28
0x7C	I2C_HOLD	I2C SDA 保持时间寄存器	0x00000001	小节 24.7.29
0x88	I2C_DMA	I2C DMA 控制寄存器	0x00000000	小节 24.7.30
0x94	I2C_SETUP	I2C SDA 建立时间寄存器	0x00000064	小节 24.7.31
0x98	I2C_GCR	I2C 广播呼叫 ACK 寄存器	0x00000001	小节 24.7.32

24.7.1 I2C 控制寄存器 (I2C_CR)

偏移地址: 0x00 复位值: 0x007F

1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved				RESTART	STOP	EMPINT	STOPINT	DISSLAVE	REPEN	MASTER10	SLAVE10	SPI	EED	MASTER	
						rw	rw	rw	rw	rw	rw	r	rw	rw	rw	rw

Bit	Field	Type	Reset	Description
15 : 11	Reserved			始终读为 0。
10	RESTART	rw	0x00	发送或接收之前,是否产生一个 RESTART 信号 仅在 IC_EMPTYFIFO_HOLD_MASTER_EN 的配置为"1" 时有效。 1: 如果 RESTART 信号为"1",数据接收或发送(根据 CMD 的值)前产生一个 RESTART 的信号,无论前一个命令是 否改变数据的传输方向。如果 RESTART 信号为"0",STOP 信号将紧跟 START 信号 0: 如果 RESTART 信号为"1",仅在前一个命令改变传输方向时才产生 RESTART 信号。如果 RESTART 信号为 '0',STOP 信号将紧跟 START 信号

Bit	Field	Type	Reset	Description
9	STOP	rw	0x00	STOP: 发送或接收之后,是否产生一个 STOP 信号 仅在 IC_EMPTYFIFO_HOLD_MASTER_EN 的配置为"1" 时有效。 1: 当前字节之后产生一个 STOP 信号,无论 Tx FIFO 是 否为空。如果 Tx FIFO 不为空,主机立即发出一个新的传输及总线仲裁信号 0: 当前字节之后不产生一个 STOP 信号,无论 Tx FIFO 是 否为空。主机继续当前传输(发送或接收数据根据 CMD 的值)。如果 Tx FIFO 为空,主机将拉低 SCL 挂起总线直至 Tx FIFO 收到新数据
8	EMPINT	rw	0x00	该位控制 TX_EMPTY 中断产生,细节参考 RAWISR 寄存器。
7	STOPINT	rw	0x00	在从机模式下,是否产生 STOP 中断。 1: 当地址匹配时才产生 STOP 中断 0: 无论地址是否匹配,都产生 STOP 中断 该位仅适用于从机模式 注: 广播地址寻址时,如果该位置位,从机不产生 STOP 中断。 STOP 中断仅当发送的地址与从机地址匹配时产生。
6	DISSLAVE	rw	0x01	该位控制 I2C 接口从机禁止 (This bit controls whether I2C has its slave disabled) 0: 从机使能 1: 从机禁止
5	REPEN	rw	0x01	当作为主机时该位控制是否发送 RESTART 条件 (Determines whether RESTART conditions may be sent when acting as a master) 0: 禁止 1: 使能 当 RESTART 禁止,I2C 接口作为主机时不能执行以下功能: 发送起始字节 组合格式模式下改变传输方向 10 位的地址格式的读操作 替换 RESTART 条件为先发送停止条件再发送起始条件。如果上述操作执行会置位 RAWISR 寄存器的位 6 (TX_ABRT)
4	MASTER10	r	0x01	I2C 作为主机时的地址格式(Address mode when acting as a master) 0: 7 位的地址格式 1: 10 位的地址格式

Bit	Field	Туре	Reset	Description
3	SLAVE10	rw	0x01	当作为从机时,该位控制响应 10 位或者 7 位地址(When
				acting as a slave, this bit controls whether the I2C re-
				sponds to 7- or 10-bit addresses)
				0:7位的寻址地址。I2C接口忽略处理10位的寻址。对于
				7 位寻址,仅比较 SAR 寄存器的低 7 位
				1:10 位的寻址地址。I2C 仅响应10 位的寻址,接收地址
				与 SAR 的 10 位比较
2: 1	SPEED	rw	0x03	该两位控制 I2C 接口工作的速率模式(These bits control
				at which speed the I2C operates)
				该设置仅当 I2C 接口工作在主机模式下有效。
				1:标准模式 (0~100Kbps)
				2: 快速模式 (400Kbps)
0	MASTER	rw	0x01	该位控制主机模式(This bit controls whether the I2C mas-
				ter is enabled)
				0: 主机禁止
				1: 主机使能

DISSLAVE(bit 6) 和 MASTER(bit 0) 配置如下表所列:

表 66. DISSLAVE(bit 6) 和 MASTER(bit 0) 配置

DISSLAVE CR[6]	MASTER CR[0]	状态
0	0	从机器件
0	1	配置错误
1	0	配置错误
1	1	主机器件

24.7.2 I2C 目标地址寄存器(I2C_TAR)

偏移地址: 0x04 复位值: 0x0055

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Rese	rved		SPECIAL	GC					ADD	R				
•					rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
15 : 12	Reserved			始终读为 0。
11	SPECIAL	rw	0x00	该位指示软件执行的是否是特殊命令(广播呼叫或者起始
				字节命令)
				0: 忽略第 10 位 GC,正常使用 ADDR 位
				1: 执行特殊 I2C 命令如 GC 位描述

Bit	Field	Туре	Reset	Description
10	GC	rw	0x00	如果位 11 置位,该位显示 I2C 执行的是广播呼叫还是起始
				字节 (If bit 11(SPECIAL) is set to 1, then this bit indicates
				whether a General Call or START byte command is to be
				performed by the I2C)
				0: 广播呼叫地址。发送广播呼叫地址时只能执行写操作。
				I2C接口一直工作在广播地址模式下直到 SPECIAL(bit 11)
				的值被清零
				1: 起始字节命令
9:0	ADDR	rw	0x55	主操作的目标地址 (This is the target address for any mas-
				ter transaction)
				当发送一个广播地址,这些位就可以忽略。
				要产生开始字节的命令,CPU 只需要对这些位写一次。

24.7.3 I2C 从机地址寄存器(I2C_SAR)

偏移地址: 0x08 复位值: 0x0055

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved									ΑĽ	DDR				
						rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
15 : 10	Reserved			始终读为 0。
9:0	ADDR	rw	0x55	当 I2C 接口工作在从机模式下,这些存储从机地址对于 7
				位的地址格式, ADDR 只有 [6:0] 有效。

24.7.4 I2C 数据命令寄存器(I2C_DR)

偏移地址: 0x10 复位值: 0x0001

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved										DA	ΑT			
							w	rw							

Bit	Field	Type	Reset	Description
15 : 9	Reserved			始终读为 0。

Bit	Field	Туре	Reset	Description
8	CMD	W	0x00	控制在主模式下执行读或写操作
				1: 读
				0: 写
				当一个命令进入 TX FIFO,该位用于区分读写命令。在从
				接收模式下,该位写值操作被忽略。在从发送模式下,写0
				表示 DR 寄存器的数据准备发送。
7:0	DAT	rw	0x01	I2C 总线待发送或者接收到的数据

24.7.5 标准模式 I2C 时钟高电平计数寄存器(I2C_SSHR)

偏移地址: 0x14 复位值: 0x0190

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CNT														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
15 : 0	CNT	rw	0x0190	I2C 接口标准模式下 SCL 时钟高电平周期
				注意:该寄存器可配置值在 6 和 65525 之间,这是由于 I2C 接
				口使用了一个 16 位的计数器,该计数器值等于 SSHR + 10 时标
				志 I2C 总线处于空闲状态。

24.7.6 标准模式 I2C 时钟低电平计数寄存器(I2C_SSLR)

偏移地址: 0x18 复位值: 0x01D6

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CNT														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
15 : 0	CNT	rw	0x01D6	I2C 接口标准模式下 SCL 时钟低电平周期
				最小值为8。

24.7.7 快速模式 I2C 时钟高电平计数寄存器(I2C_FSHR)

偏移地址: 0x1C 复位值: 0x0036

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CNT														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
15 : 0	CNT	rw	0x0036	I2C 接口快速模式下 SCL 时钟高电平周期
				当 I2C 工作在标准模式下该寄存器为只读且返回值为 0。
				最小值为 6。

24.7.8 快速模式 I2C 时钟低电平计数寄存器(I2C_FSLR)

偏移地址: 0x20 复位值: 0x0082

7 12 8 15 14 13 11 10 9 6 0 CNT rw rw rw rw rw rw rw rw rw rw

Bit	Field	Туре	Reset	Description
15 : 0	CNT	rw	0x0082	I2C 接口快速模式下 SCL 时钟低电平周期
				当 I2C 工作在标准模式下该寄存器为只读且返回值为 0。
				最小值为8。

24.7.9 I2C 中断状态寄存器 (I2C_ISR)

偏移地址: 0x2C 复位值: 0x0000

15 12 7 6 5 0 14 13 11 10 9 8 3 2 Reserved RESTART GC START STOP ACTIV RX_DONE TX_ABRT RD_REQ TX_EMPTY TX_OVER RX_FULL RX_OVER RX_UNDER D

Bit	Field	Type	Reset	Description
15 : 14	Reserved			始终读为 0。
13:0	ISR	r	0x0000	具体每位描述可以参考 RAWISR 寄存器

24.7.10 I2C 中断屏蔽寄存器(I2C_IMR)

偏移地址: 0x30 复位值: 0x08FF

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved			GC	START	STOP	ACTIV	RX_DONE	TX_ABRT	RD_REQ	TX_EMPTY	TX_OVER	RX_FULL	RX_OVER	RX_UNDER
				rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
15 : 12	Reserved			始终读为 0。
11 : 0	IMR	rw	0x08FF	每一位屏蔽与 ISR 对应位。

24.7.11 I2C RAW 中断寄存器(I2C_RAWISR)

偏移地址: 0x34 复位值: 0x0000

RAWISR 与 ISR 寄存器的区别在于前者不会被屏蔽。

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved			GC	START	STOP	ACTIV	RX_DONE	TX_ABRT	RD_REQ	TX_EMPTY	TX_OVER	RX_FULL	RX_OVER	RX_UNDER	
				r	r	r	r	r	r	r	r	r	r	r	r

Bit	Field	Туре	Reset	Description
15 : 12	Reserved			始终读为0。
11	GC	r	0x00	广播呼叫(General call)
				接收到广播呼叫地址时置位。
				禁止 I2C 接口或者当 CPU 读 GC 寄存器时清零。I2C 将接
				收的数据存储在接收缓冲中。
10	START	r	0x00	起始条件检测(Start condition detection)
				无论 I2C 接口工作在主机或者从机,一旦检测到 I2C 接口
				上起始或者重复起始条件即置位该位
9	STOP	r 0x0	0x00	停止条件检测(Stop condition detection)
				该位状态依据 CR 寄存器的 STOPINT 的状态
				当 STOPINT = 0
				无论 I2C 接口工作在主机或者从机,一旦检测到 I2C 接口
				上停止条件时即置位该位。从机模式下,无论寻址是否匹
				配都会产生一个 STOP 中断
				当 STOPINT = 1
				在主机模式下(MASTER = 1),该位显示 I2C 接口是否发
				生停止条件
				在从机模式下(MASTER = 0),仅当从机地址匹配成功时
				产生一个 STOP 中断。

Bit	Field	Туре	Reset	Description
8	ACTIV	r	0x00	I2C 接口激活,该位用于捕捉 I2C 模块的活动状态 置位后只能由以下四种方式清零: 禁止 I2C 接口 读 ACTIV 寄存器 读 ICR 寄存器 系统复位 一旦置位后,只能由上述方式清零,即使 I2C 处于空闲状态,该位也仍然保持为高直到被清零。
7	RX_DONE	r	0x00	从发送结束(Transmit done) 当 I2C 作为从发送时,如果发送一个字节的数据后主机没 有响应,将会置位该位。 该情况发生在传输的最后一个字节,表示传输结束。
6	TX_ABRT	r	0x00	发送中止(Transmit abort) 当 I2C 接口作为发送机时,不能发送完缓冲中的数据时置位。 注意:发送中止会将 I2C 接口中的接收和发送缓冲清空。发送缓冲会处于刷新状态直到读 TX_ABRT 寄存器。一旦该读操作执行后,发送就可以接收 APB 总线上的新的数据。
5	RD_REQ	г	0x00	读请求(Read request) 当 I2C 作为从机,其他主机试图从 I2C 接口读取数据时置位。 I2C 接口会使总线保持等待状态(SCL = 0)直到中断被处理。这就意味着 I2C 接口作为从机时被其他主机寻址成功且要求发送数据。处理器必须响应该中断然后写入数据到DR 寄存器中。当处理器读 RD_REQ 寄存器该位清零。
4	TX_EMPTY	r	0x00	发送缓冲空(Transmit buffer empty) 该位状态取决于 CR 寄存器中的 EMPINT 状态: 当 EMPINT = 0,发送缓冲为空时置位 当 EMPINT = 1,发送缓冲为空且内部移位寄存器结束时置 位 当发送缓冲非空时由硬件自动清零。
3	TX_OVER	r	0x00	发送缓冲过载(Transmit buffer over) 发送缓冲满时处理器写入新的数据导致溢出时置位。
2	RX_FULL	r	0x00	接收缓冲非空(Receive buffer not empty) 当接收缓冲非空时置位。 当接收缓冲为空时由硬件清零。
1	RX_OVER	r	0x00	接收缓冲过载(Receive buffer over) 接收缓冲满且有收到新的数据时置位。此时 I2C 接口会响 应,但新的数据会丢失。
0	RX_UNDER	r	0x00	接收缓冲欠载(Receive buffer under) 当 RX FIFO 为空时处理器读 DR 寄存器时置位。

24.7.12 I2C 接收阈值(I2C_RXTLR)

偏移地址: 0x38 复位值: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved TL

r r r r r r r r r

Bit	Field	Type	Reset	Description
15 : 8	Reserved			始终读为 0。
7:0	TL	r	0x00	接收 FIFO 阈值(Receive FIFO threshold level)
				控制 RX_FULL 中断触发。

24.7.13 I2C 发送阈值(I2C_TXTLR)

偏移地址: 0x3C 复位值: 0x0000

Bit	Field	Туре	Reset	Description
15 : 8	Reserved			始终读为 0。
7:0	TL	r	0x00	接收 FIFO 阈值(Receive FIFO threshold level)
				控制 TX_EMPTY 中断触发。

24.7.14 I2C 组合和独立中断清除寄存器(I2C_ICR)

偏移地址: 0x40 复位值: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved ICR

BitFieldTypeResetDescription15:1Reserved始终读为 0。0ICRr0x00读该寄存器将会清除所有组合中断、独立中断。该位不清除硬件可自动清除的中断,仅清除软件可清除中断。

24.7.15 I2C 清除 RX_UNDER 中断寄存器(I2C_RX_UNDER)

偏移地址: 0x44 复位值: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

RX_UNDER

Bit	Field	Туре	Reset	Description
15 : 1	Reserved			始终读为 0。
0	RX_UNDER	r	0x00	读该寄存器清零 RX_UNDER 中断(RAWISR[0])

24.7.16 I2C 清除 RX_OVER 中断寄存器(I2C_RX_OVER)

偏移地址: 0x48 复位值: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

RX_OVER

BitFieldTypeResetDescription15:1Reserved始终读为 0。0RX_OVERr0x00读该寄存器清零 RX_OVER 中断(RAWISR[1])

24.7.17 I2C 清除 TX_OVER 中断寄存器(I2C_TX_OVER)

偏移地址: 0x4C 复位值: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

TX_OVER

Bit	Field	Туре	Reset	Description
15 : 1	Reserved			始终读为 0。
0	TX_OVER	r	0x00	读该寄存器清零 TX_OVER 中断(RAW_ISR[3])

24.7.18 I2C 清除 RD_REQ 中断寄存器(I2C_RD_REQ)

偏移地址: 0x50 复位值: 0x0000

UM MM32SPIN2x p Ver1.19

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						F	Reserve	d							RD_REQ
															r

Bit	Field	Type	Reset	Description
15 : 1	Reserved			始终读为 0。
0	RD_REQ	r	0x00	读该寄存器清零 RD_REQ 中断(RAW_ISR[5])

24.7.19 I2C 清除 TX_ABRT 中断寄存器(I2C_TX_ABRT)

偏移地址: 0x54 复位值: 0x0000

15 14 13 12 11 10 Reserved TX_ABRT

Bit Field **Type** Reset Description 始终读为0。 15:1 Reserved 0 TX_ABRT 0x00 读该寄存器清零 TX_ABRT 中断(RAWISR6]) 同时也将 TX FIFO 从刷新/复位状态中释放,以便接收写入 的数据。

24.7.20 I2C 清除 RX_DONE 中断寄存器(I2C_RX_DONE)

偏移地址: 0x58 复位值: 0x0000

15 14 13 12 11 10 8 0

Reserved RX_DONE

Bit	Field	Type	Reset	Description
15 : 1	Reserved			始终读为 0。
0	RX_DONE	r	0x00	读该寄存器清零 RX_DONE 中断(RAWISR[7])

24.7.21 I2C 清除 ACTIVITY 中断寄存器(I2C_ACTIV)

偏移地址: 0x5C 复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Res	erved							ACTIV

r

Bit	Field	Туре	Reset	Description
15 : 1	Reserved			始终读为0。
0	ACTIV	r	0x00	如果 I2C 总线不活动则读该寄存器清零 ACTIV 中断
				(RAWISR[8])
				如果 I2C 仍然活动,那么 ACTIV 中断将继续置位。当 I2C
				模块禁止或者在 I2C 总线不再活动时该位由硬件清零。可
				以通过读该寄存器得到 RAWISR 中的 ACTIV (bit 8) 的状
				态。

24.7.22 I2C 清除 STOP_DET 中断寄存器(I2C_STOP)

偏移地址: 0x60 复位值: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved STOP

r

Bit	Field	Туре	Reset	Description
15 : 1	Reserved			始终读为 0。
0	STOP	r	0x00	读该寄存器清零 STOP 中断(RAWISR[9])

24.7.23 I2C 清除 START_DET 中断寄存器(I2C_START)

偏移地址: 0x64 复位值: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved START

r

Bit	Field	Туре	Reset	Description
15 : 1	Reserved			始终读为 0。
0	START	r	0x00	读该寄存器清零 START 中断(RAWISR[10])

24.7.24 I2C 清除 GEN_CALL 中断寄存器(I2C_GC)

偏移地址: 0x68 复位值: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

GC

Bit	Field	Type	Reset	Description
15 : 1	Reserved			始终读为 0。
0	GC	r	0x00	读该寄存器清零 GC 中断(RAWISR[11])

24.7.25 I2C 使能寄存器 (I2C_ENR)

偏移地址: 0x6C 复位值: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

ABORT ENABLE

rw rw

Bit	Field	Туре	Reset	Description
15 : 2	Reserved			始终读为 0。
1	ABORT	rw	0x00	I2C 传输中止(I2C transfer abort)
				0: 中止没有发生或者已经结束
				1: 中止操作正在进行
				I2C 模块作为主机时置位时可以软件中止 I2C 的传输。一
				旦置位不能立即清除。置位后 I2C 模块控制逻辑会在完成
				当前传输之后产生一个 STOP 条件和清空发送缓冲,中止
				操作之后产生 TX_ABRT 中断。
				该 ABORT 位会在中止操作结束后自动清零。
0	ENABLE	rw	0x00	I2C 模块使能(I2C mode enable)
				0:禁止 I2C 模块(发送和接收缓冲保持擦除状态)
				1: 使能 I2C 模块

24.7.26 I2C 状态寄存器(I2C_SR)

偏移地址: 0x70 复位值: 0x0006

该寄存器只读,指示当前传输和缓冲状态,状态位不产生中断。

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved								SLV_ACTIV	MST_ACTIV	RFF	RFNE	TFE	TFNE	ACTIV	
									r	r	r	r	r	r	r

Bit	Field	Туре	Reset	Description
15 : 7	Reserved			始终读为 0。
6	SLV	r	0x00	从机状态机活动状态位(Slave FSM activity status)
	_ACTIV			0: 从机状态机处于 IDLE 状态,所以 I2C 从机部分不活动
E	MST	_	0x00	1: 从机状态机不处于 IDLE 状态,所以 I2C 从机部分活动
5	_ACTIV	r	UXUU	主机状态机活动状态位(Master FSM activity status) 0: 主机状态机处于 IDLE 状态,所以 I2C 主机部分不活动
	_ACTIV			1: 主机状态机不处于 IDLE 状态, 所以 I2C 主机部分不语动
4	RFF	r	0x00	接收缓冲满(Receive FIFO completely full)
7	TXI I	'	OXOO	0:接收缓冲未满
				1:接收缓冲满
3	RFNE	r	0x00	接收缓冲非空(Receive FIFO not empty)
				0: 接收缓冲空
				1:接收缓冲非空
2	TFE	r	0x01	发送缓冲空(Transmit FIFO completely empty)
				0: 发送缓冲非空
				1: 发送缓冲空
1	TFNF	r	0x01	发送缓冲未满(Transmit FIFO not full)
				0: 发送缓冲满
				1: 发送缓冲未满
0	ACTIV	r	0x00	I2C 位活动状态(I2C activity status)
				MST_ACTIV 位与 SLV_ACTIV 位相或的结果。

24.7.27 I2C 发送缓冲水平寄存器(I2C_TXFLR)

偏移地址: 0x74 复位值: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved	CNT

BitFieldTypeResetDescription15:2Reserved始终读为 0。1:0CNTr0x00发送缓冲中有效数据个数 (0~2)

24.7.28 I2C 接收缓冲水平寄存器(I2C_RXFLR)

偏移地址: 0x78

复位值: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CNT

r

Bit	Field	Type	Reset	Description
15 : 2	Reserved			始终读为 0。
1:0	CNT	r	0x00	接收缓冲中有效数据个数(0~2)

24.7.29 I2C SDA 保持时间寄存器(I2C_HOLD)

偏移地址: 0x7C

复位值: 0x0000 0001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	Reserved									RX_HOLD							
								r	r	r	r	r	r	r	r		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
							TX_	HOLD									
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r		

Bit	Field	Туре	Reset	Description
31 : 24	Reserved			始终读为 0。
23 : 16	RX_HOLD	r	0x00	当 I2C 器件作为接收时,SDA 保持时间,单位为 APB1 系统时钟周期
15 : 0	TX_HOLD	r	0x01	当 I2C 器件作为发送时,SDA 保持时间,单位为 APB1 系统时钟周期

24.7.30 I2C DMA 控制寄存器(I2C_DMA)

偏移地址: 0x88

复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Ü
							Reserve	ed						TXEN	RXEN

v rw

Bit	Field	Туре	Reset	Description
15 : 2	Reserved			始终读为 0。
1	TXEN	rw	0x00	发送 DMA 使能(Transmit DMA enable)
				0: 发送 DMA 禁止
				1: 发送 DMA 使能

Bit	Field	Туре	Reset	Description	
0	RXEN	rw	0x00	接收 DMA 使能(Receive DMA enable)	
				0:接收 DMA 禁止	
				1:接收 DMA 使能	

24.7.31 I2C SDA 建立时间寄存器(I2C_SETUP)

偏移地址: 0x94 复位值: 0x0064

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved										CI	١T			
										rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
15 : 8	Reserved			始终读为 0。
7:0	CNT	rw	0x64	SDA 建立时间(SDA setup)
				如果有要求建议延迟时间为 1000nS, APB1 时钟频率为
				10MHZ 时,建议该寄存器设为 11。该寄存器最小值为 2。

24.7.32 I2C 广播呼叫 ACK 寄存器(I2C_GCR)

偏移地址: 0x98 复位值: 0x0001

15	14	13	12	11	10	9	8	/	6	5	4	3	2	1	U
						- 1	Reserve	d							GC

rw

Bit	Field	Туре	Reset	Description
15 : 1	Reserved			始终读为 0。
0	GC	rw	0x01	广播呼叫 ACK(ACK general call)
				1:接收到广播呼叫后响应 ACK
				0:接收到广播呼叫后不响应,也不产生中断

25

通用异步收发器 (UART)

通用异步收发器 (UART)

25.1 UART 简介

通用异步收发器 (UART) 提供了一种灵活的方法与使用工业标准 NRZ 异步串行数据格式的外部设备之间进行全双工数据交换。UART 利用分数波特率发生器提供宽范围的波特率选择。它支持同步单向通信和半双工单线通信,以及调制解调器 (CTS/RTS) 操作。

使用多缓冲器配置的 DMA 方式,可以实现高速数据通信。

25.2 UART 主要特征

- 支持异步方式下 RS-232S 协议,符合工业标准 16550
- 支持 DMA 请求
- 全双工异步操作
- 分数波特率发生器系统
- 发送和接收共用的可编程波特率
- 单独分开的发送和接收缓冲寄存器
- 内置 1 字节发送和 32 字节接收缓冲
- 发送和接收数据低位在前
- 一个起始位开始,后面接数据位,输出的数据长度可为 5 位、6 位、7 位、8 位,最后为停止位。另外可选择是否有加奇偶校验位,奇偶校验位在数据位之后停止位之前。
- 第9位可做同步帧配置
- 支持硬件奇数或者偶数校验产生和侦测
- 线断开产生和侦测
- 支持硬件自动流控制
- 支持下面中断源:
 - 发送端 BUFFER 空
 - 接收端数据有效
 - 接收缓冲缓存溢出
 - 帧错误
 - 奇偶校验错误
 - 接收断开帧
 - 发送移位寄存器完成
 - 发送断开帧完成
 - 接收同步帧

25.3 UART 功能概述

任何 UART 双向通信至少需要两个脚:接收数据输入 (RX) 和发送数据输出 (TX)。

RX: 接收数据串行输入。通过过采样技术来区别数据和噪音,从而恢复数据。

TX: 发送数据输出。当发送器被禁止时,输出引脚恢复到它的 I/O 端口配置。当发送器被激活,并且不发送数据时,TX 引脚处于高电平。

- 总线在发送或接收前应处于空闲状态
- 一个起始位
- 一个数据字 (5, 6, 7 或 8 位), 最低有效位在前
- 0.5, 1, 1.5, 2 个的停止位,由此表明数据帧的结束
- 使用分数波特率发生器——16 位整数和 4 位小数的表示方法。

下列引脚在硬件流控模式中需要:

- nCTS: 清除发送,若是高电平,在当前数据传输结束时阻断下一次的数据发送。
- nRTS: 发送请求, 若是低电平, 表明 UART 准备好接收数据。

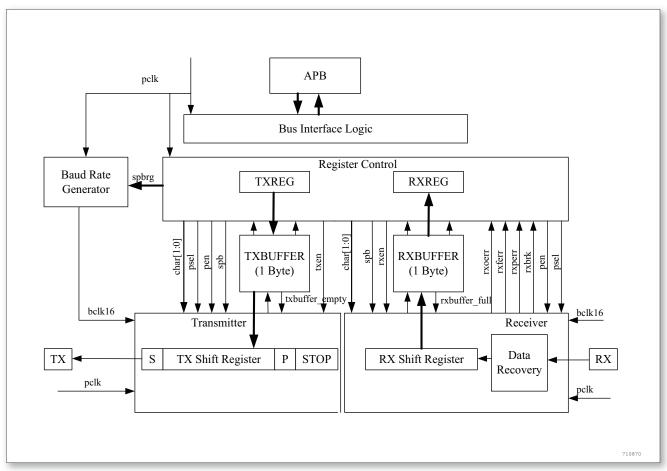


图 232. UART 方框图

25.3.1 UART 特性描述

字长可以通过编程 UART_CCR 寄存器中的 CHAR 位,选择 5~8 位。在起始位期间,TX 脚处于低电平,在停止位期间处于高电平。

空闲符号被视为完全由'1'组成的一个完整的数据帧,后面跟着包含了数据的下一帧的开始位 ('1'的位数也包括了停止位的位数)。

断开符号被视为在一个帧周期内全部收到'0'(包括停止位期间,也是'0')。在断开帧结束时,发送器再插入 1 或 2 个停止位 ('1') 来应答起始位。

发送和接收由一个共用的波特率发生器驱动,当发送器和接收器的使能位分别置位时,分 别为其产生时钟。

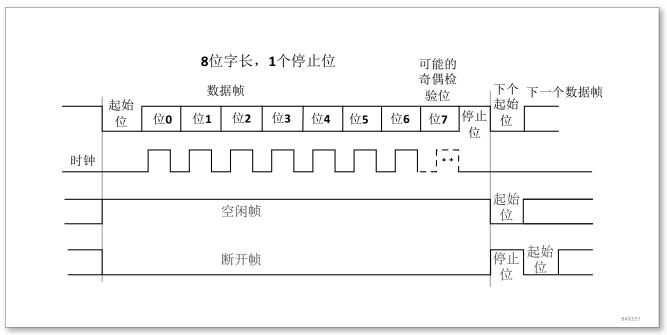


图 233. UART 时序

25.3.2 发送器

发送器根据 CHAR 位的状态发送 5~8 位的数据字。当发送使能位(TXEN)被设置时,发送移位寄存器中的数据在 TX 脚上输出。

字符发送

在 UART 发送期间,在 TX 引脚上首先移出数据的最低有效位。在此模式里,UART_TDR 寄存器包含了一个内部总线和发送移位寄存器之间的缓冲器。

每个字符之前都有一个低电平的起始位;之后跟着的停止位,其数目可配置。

在数据传输期间不能复位 TXEN 位, 否则将破坏 TX 脚上的数据, 因为波特率计数器停止计数。正在传输的当前数据将丢失。

可配置的停止位

随每个字符发送的停止位的位数可以通过 SPB 位进行编程。

断开帧是 10 位低电平,后跟停止位;或者 11 位低电平,后跟停止位。接收到断开帧会置位中断状态寄存器的 RXBRK_INTF 位。

配置步骤

- 1. 通过在 UART GCR 寄存器上置位 UARTEN 位来激活 UART。
- 2. 编程 UART_CCR 的 CHAR 位来定义字长。
- 3. 在 UART CCR 中 SPB 编程停止位的位数。
- 4. 设置 UART GCR 中的 TXEN 位。
- 5. 利用 UART_BRR 寄存器选择要求的波特率。

6. 把要发送的数据写进 UART_TDR 寄存器 (此动作清除 TX_INTF 位)。在只有一个缓冲器的情况下,对每个待发送的数据重复步骤 6。

单字节通信

清零 TX_INTF 位总是通过对数据寄存器的写操作来完成的。TX_INTF 位由硬件来设置,它表明:

- 数据已经从 TDR 移送到移位寄存器,数据发送已经开始
- TDR 寄存器被清空
- 下一个数据可以被写进 UART_TDR 寄存器而不会覆盖先前的数据。

如果 TXIEN 位被设置,此标志将产生一个中断。如果此时 UART 正在发送数据,对 UART_TDR 寄存器的写操作把数据存进 TDR 寄存器,并在当前传输结束时把该数据复制进移位寄存器。

如果此时 UART 没有在发送数据,处于空闲状态,对 UART_TDR 寄存器的写操作直接 把数据放进移位寄存器,数据传输开始,TX_INTF 位立即被置起。同时 UART_CSR 的 TXBUF_EMPTY 也会置起。当一帧发送完成时(停止位发送后),同时没有往 UART_TDR 写入新的数据(TDR 寄存器为空),TXC 会置位,表示所有的传输都已经完成。

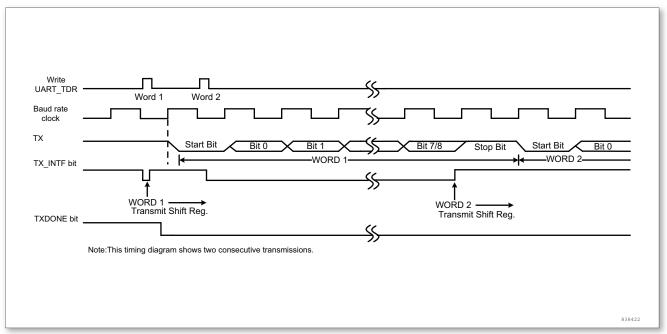


图 234. 发送时状态位变化

断开符号

设置 BRK 可发送一个断开符号。如果设置 BRK=1,在完成当前数据发送后,将在 TX 线上发送一个断开符号。断开字符发送完成时(在断开符号的停止位时)软件必须设置 BRK = 0。UART 在最后一个断开帧的结束处插入一逻辑'1',以保证能识别下一帧的起始位。

25.3.3 接收器

字符接收

在 UART 接收期间,数据的最低有效位首先从 RX 脚移进。在此模式里,UART_RDR 寄存器包含的缓冲器位于内部总线和接收移位寄存器之间。

配置步骤:

- 1. 将 UART GCR 寄存器的 UARTEN 置'1'来激活 UART。
- 2. 编程 UART_CCR 的 CHAR 位定义字长。
- 3. 在 UART_CCR 中 SPB 编程停止位的位数。
- 4. 利用 UART_BRR 寄存器选择要求的波特率。
- 5. 设置 UART_GCR 的 RXEN 位。激活接收器,使它开始寻找起始位。

当一字符被接收到时,

- RX_INTF 位被置位。它表明移位寄存器的内容被转移到 RDR。换句话说,数据已经被接收并且可以被读出(包括与之有关的错误标志)。
- 如果 RXIEN 位被设置,产生中断。
- 在接收期间如果检测到帧错误,或溢出错误,错误标志将被置起。
- 软件读 UART RDR 寄存器。RX INTF 位必须在下一字符接收结束前被清零。

在接收数据时, RXEN 位不应该被复位。如果 RXEN 位在接收时被清零, 当前字节的接收被丢失。

断开符号

当接收到一个断开帧时, UART 会置位 RXBRK INTF 中断。

溢出错误

如果在 UART_RDR 没有读出前又接收到一个字符,则发生溢出错误。

当溢出错误产生时:

- RXOERR INTF 位被置位。
- RDR 内容将不会丢失。读 UART RDR 寄存器仍能得到先前的数据。
- 移位寄存器中以前的内容将被覆盖。随后接收到的数据都将丢失。
- 如果 RXOERREN 位被设置,中断产生。

帧错误

当停止位没有在预期的时间上接收和识别出来时检测到帧错误。当帧错误被检测到时:

- RXFERR_INTF 位被硬件置起。
- 无效数据不会从移位寄存器传送到 UART RDR 寄存器。
- 如果 RXFERREN 位被设置,中断产生。

25.3.4 9 位数据通信

如果使能 UART_CCR 寄存器的 B8EN 控制位, UART 使能 9 位数据的发送和接收,可以发送和接收 9 位数据。注意:在 B8EN 使能后,奇偶校验使能位 PEN 不起作用。

数据发送的时候,在写入数据到发送寄存器 UART_TDR 前,需要先设置 B8TXD。B8TXD 作为发送数据的 MSB 和 UART_TDR 的值同时发送。如果设置了 B8TOG,如果 B8TXD 与 B8POL 相同时,表示该数据作为地址帧或者同步帧,发送结束后 B8TXD 会自动翻转。在接下来的数据发送过程中,不需要再设置 B8TXD 为无效电平。

数据接收的时候,接收数据的最高位可以从寄存器位 B8RXD 读到。如果接收的 B8RXD 与 B8POL 相同时,中断状态寄存器 UART_ISR 的 RXB8_INTF 位会置位。

25.3.5 多处理器通信

通过 UART 可以实现多处理器通信 (将几个 UART 连在一个网络里)。例如某个 UART 设备可以是主,它的 TX 输出和其他 UART 从设备的 RX 输入相连接; UART 从设备各自的 TX 输出逻辑地与在一起,并且和主设备的 RX 输入相连接。

在多处理器配置中,我们通常希望只有被寻址的接收者才被激活,来接收随后的数据,这样就可以减少由未被寻址的接收器的参与带来的多余的 UART 服务开销。

未被寻址的设备可启用其静默功能置于静默模式。在静默模式里:

- 任何接收状态位都不会被设置。
- 所有接收中断被禁止。
- UART_CCR 寄存器中的 RWU 位被置 1。RWU 可以被硬件自动控制或在某个条件下由软件写入。

根据 UART_CCR 寄存器中的 WAKE 位状态,UART 可以用二种方法进入或退出静默模式。

- 如果 WAKE 位被复位: 进行空闲总线检测。
- 如果 WAKE 位被设置:进行地址标记检测。

空闲总线检测 (WAKE=0)

当 RWU 位被写 1 时,UART 进入静默模式。当检测到一空闲帧时,它被唤醒。然后 RWU 被硬件清零,中断状态标志 RX_INTF 不会置位。RWU 还可以被软件写 0。

地址标记 (address mark) 检测 (WAKE=1)

在这个模式里,如果 MSB 是 B8POL,该字节被认为是地址,否则被认为是数据。在一个地址字节中,目标接收器的地址被接收器同它自己地址做比较,接收器的地址和屏蔽位被编程在 UART RXADDR 和 UART RXMASK 寄存器中。

如果接收到的字节与它的编程地址不匹配时,UART 进入静默模式。此时,硬件设置 RWU 位。接收该字节既不会设置中断状态标志 RX_INTF 也不会产生中断或发出 DMA 请求,因为 UART 已经在静默模式。

当接收到的字节与接收器内编程地址匹配时,UART 退出静默模式。然后 RWU 位被清零,随后的字节被正常接收。收到这个匹配的地址字节时将设置中断状态标志 RX_INTF,因为 RWU 位已被清零。

25.3.6 单线半双工通信

单线半双方模式通过设置 UART_SCR 寄存器的 HDSEL 位选择。在这个模式里, UART_SCR 寄存器的 SCEN 位必须保持清零状态。

UART 可以配置成遵循单线半双工协议。在单线半双工模式下,TX 和 RX 引脚在芯片内部 互连。使用控制位"HALF DUPLEX SEL" (UART_SCR 中的 HDSEL 位) 选择半双工和全 双工通信。

当 HDSEL 为 1 时

- RX 不再被使用
- 当没有数据传输时,TX 总是被释放。因此,它在空闲状态的或接收状态时表现为一个标准 I/O 口。这就意味该 I/O 在不被 UART 驱动时,必须配置成悬空输入(或开漏的输出

高)。

除此以外,通信与正常 **UART** 模式类似。由软件来管理线上的冲突 (例如通过使用一个中央仲裁器)。特别的是,发送从不会被硬件所阻碍。当 **TXEN** 位被设置时,只要数据一写到数据寄存器上,发送就继续。

25.3.7 智能卡

设置 UART_SCR 寄存器的 SCEN 位选择智能卡模式。

该接口符合 ISO7816-3 标准,支持智能卡异步协议。UART 应该被设置为:

- 8 位数据位加校验位: 此时 UART CCR 寄存器中 CHAR=11、PEN=1
- 发送和接收时为 1.5 个停止位: 即 UART_CCR 寄存器的 SPB1=1、SPB0=1

下图给出的例子说明了数据线上,在有校验错误和没校验错误两种情况下的信号。

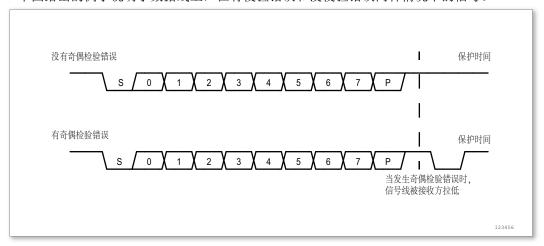


图 235. UART 方框图

当与智能卡相连接时,UART 的 TX 驱动一根智能卡的双向线。为了做到这点,RX 必须和 TX 连接到相同的 I/O 口。在发送开始位和数据字节期间,发送器的输出使能位 TXEN 被 置起,在发送停止位期间被释放 (弱上拉),因此在发现校验错误的情况下接收器可以将数 据线拉低。如果 TXEN 不被使用,在停止位期间 TX 被拉到高电平:这样的话,只要 TX 配 置成开漏,接收器也可以驱动这根线。

智能卡是一个单线半双工通信协议

- 从发送移位寄存器把数据发送出去,要被延时最小 1/2 波特时钟。在正常操作时,一个满的发送移位寄存器将在下一个波特时钟沿开始向外移出数据。在智能卡模式里,此发送被延迟 1/2 波特时钟。
- 如果在接收一个设置为 0.5 或 1.5 个停止位的数据帧期间,检测到一奇偶校验错误,在完成接收该帧后 (即停止位结束时),发送线被拉低一个波特时钟周期。这是告诉智能卡发送到 UART 的数据没有被正确地接收到。此 NACK 信号 (拉低发送线一个波特时钟周期)在发送端将产生一个帧错误 (发送端被配置成 1.5 个停止位)。应用程序可以根据协议处理重新发送数据。如果设置了 NACK 控制位,发生校验错误时接收器会给出一个 NACK 信号:否则就不会发送 NACK。
- TXC 标志的置起可以通过编程保护时间寄存器得以延时。在正常操作时,当发送移位寄存器变空并且没有新的发送请求出现时,TXC 被置起。在智能卡模式里,空的发送移位寄存器将触发保护时间计数器开始向上计数,直到保护时间寄存器中的值。TXC 在这段

时间被强制拉低。当保护时间计数器达到保护时间寄存器中的值时,TXC 被置高。

- 标志的撤销不受智能卡模式的影响。
- 如果发送器检测到一个帧错误(收到接收器的 NACK 信号),发送器的接收功能模块不会 把 NACK 当作起始位检测。根据 ISO 协议,接收到的 NACK 的持续时间可以是 1 或 2 波特时钟周期。
- 在接收器这边,如果一个校验错误被检测到,并且 NACK 被发送,接收器不会把 NACK 检测成起始位。

注意: 1. 断开符号在智能卡模式里没有意义。一个带帧错误的 00h 数据将被当成数据而不是断开符号。

2. 当来回切换 TXEN 位时,没有 IDLE 帧被发送。ISO 协议没有定义 IDLE 帧。

下图详述了 UART 是如何采样 NACK 信号的。在这个例子里,UART 正在发送数据,并且被配置成 1.5 个停止位。为了检查数据的完整性和 NACK 信号,UART 的接收功能块被激活。

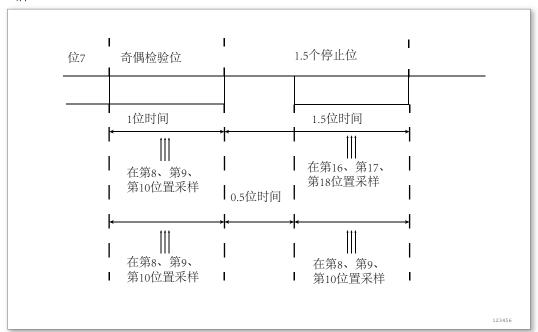


图 236. UART 方框图

25.3.8 分数波特率发生器

设置 BRR 和 FRA 寄存器,可设置相应波特率,参考如下公式:

$$f_{baudrate} = \frac{f_{PCLK}}{16 \times UARTDIV}$$

$$UARTDIV = BRR + \frac{FRA}{16}$$

得:

$$f_{baudrate} = \frac{f_{PCLK}}{16 \times BRR + FRA}$$

BRR 寄存器最小值为 4。

25.3.9 采样

由于异步操作没有单独的时钟,接收器需要一个同步于接收器方法。为了能够在接收引脚 'RX'获得正确的字符数据, UART 有一个检测电路。UART 采用 16 倍数据波特率 'bclk16'的时钟进行采样 RX 引脚的数据,每个数据有 16 个时钟采样,取中间第 7, 8, 9 的下降沿的采样值。

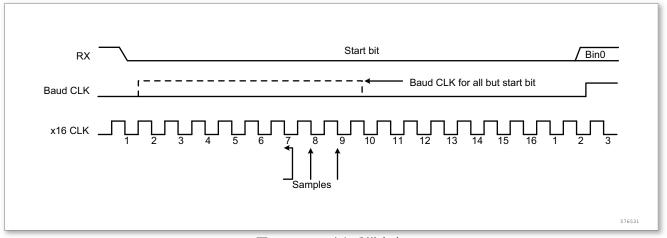


图 237. RX 引脚采样方案

25.3.10 校验控制

奇偶控制 (发送时生成一个奇偶位,接收时进行奇偶校验) 可以通过设置 UART_CCR 寄存器上的 PEN 位而激活。如果奇偶校验出错,无效数据不会从移位寄存器传送到 UART_RDR寄存器。

偶校验:校验位使得一帧中的数据以及校验位中'1'的个数为偶数。

例如:数据 = 00110101,有 4 个 '1',如果选择偶校验 (在 UART_CCR 中的 PSEL = 1),校验位将是 '0'。

奇校验: 此校验位使得一帧中的数据以及校验位中'1'的个数为奇数。

例如:数据 = 00110101,有 4 个 '1',如果选择奇校验(在 $UART_CCR$ 中的 PSEL = 0),校验位将是 '1'。

传输模式:如果 UART_CCR 的 PEN 位被置位,写进数据寄存器的数据的 MSB 位被校验位替换后发送出去 (如果选择偶校验偶数个'1',如果选择奇校验奇数个'1')。如果奇偶校验失败,UART_ISR 寄存器中的 RXPERR_INTF 标志被置'1',并且如果 RXPERREN在被预先设置的话,中断产生。

25.3.11 硬件流控制

利用 nCTS 输入和 nRTS 输出可以控制 2 个设备间的串行数据流。下图表明在这个模式里如何连接 2 个设备。

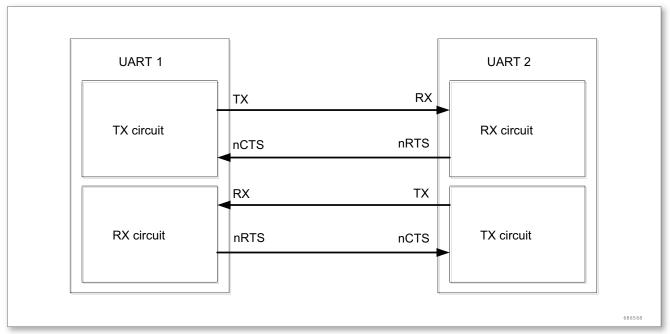


图 238. 两个 UART 间的硬件流控制

通过将 UART_GCR 中的 AUTOFLOWEN 置位,可以使能 RTS 和 CTS 流控制。

RTS 流控制

如果 RTS 流控制被使能,只要 UART 接收器准备好接收新的数据, nRTS 就变成有效 (接低电平)。当接收寄存器内有数据到达时, nRTS 被释放,由此表明希望在当前帧结束时停止数据传输。下图是一个启用 RTS 流控制的通信的例子。

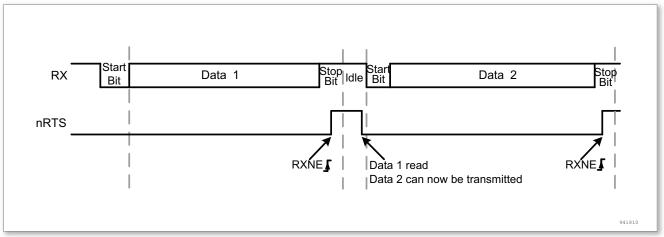


图 239. RTS 流控制

CTS 流控制

如果 CTS 流控制被使能,发送器在发送下一帧前检查 nCTS 输入。如果 nCTS 有效 (被拉成低电平),则下一个数据被发送 (假设那个数据是准备发送的),否则下一帧数据不被发出去。若 nCTS 在传输期间被变成无效,当前的传输完成后停止发送。下图是一个 CTS 流控制被启用的通信的例子。

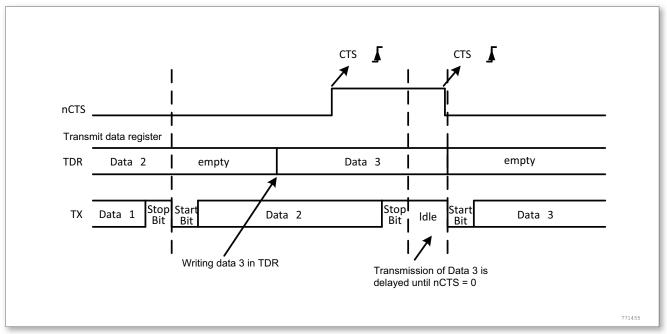


图 240. CTS 流控制

25.3.12 利用 DMA 通信

UART 可以利用 DMA 进行通信。

利用 DMA 发送

使用 DMA 进行发送时,首先在 DMA 控制寄存器上将 UART_TDR 寄存器的地址配置成 DMA 传输的目的地址,将存储器地址配置成 DMA 传输的源地址,并配置传输的数据量。通过设置 UART_GCR 寄存器的 DMAMODE 位来激活 DMA 模式。当 TXEN 位被置'1'时,DMA 就从指定的 SRAM 区传送数据到 UART_TDR 寄存器。

利用 DMA 接收

使用 DMA 进行接收时,首先在 DMA 控制寄存器上将 UART_RDR 寄存器的地址配置成 DMA 传输的源地址,将存储器地址配置成 DMA 传输的目的地址,并配置传输的数据量。通过设置 UART_GCR 寄存器的 DMAMODE 位来激活 DMA 模式。当 RXEN 位使能时,每接收到一个字节,DMA 就把数据从 UART_RDR 寄存器传送到指定的 SRAM 区。

25.4 UART 中断请求

表 67. UART 中断请求

中断事件	中断状态	使能位
发送缓冲空	TX_INTF	TXIEN
接收到有效数据	RX_INTF	RXIEN
发送移位寄存器完成	TXC_INTF	TXC_EN
接收溢出错误	RXOERR_INTF	RXOERREN
奇偶校验错误	RXPERR_INTF	RXPERREN
帧错误	RXFERR_INTF	RXFERREN
接收断开帧	RXBRK_INTF	RXBRKEN

中断事件	中断状态	使能位
发送断开帧	TXBRK_INTF	TXBRK_EN
接收同步帧	RXB8_INTF	RXB8_EN

如果设置了对应的中断使能控制位,这些设置就可以产生各自对应的中断。

25.5 UART 寄存器描述

表 68. UART 寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	UART_TDR	UART 发送数据寄存器	0x00000000	小节 25.5.1
0x04	UART_RDR	UART 接收数据寄存器	0x00000000	小节 25.5.2
0x08	UART_CSR	UART 当前状态寄存器	0x00000009	小节 25.5.3
0x0C	UART_ISR	UART 中断状态寄存器	0x00000000	小节 25.5.4
0x10	UART_IER	UART 中断使能寄存器	0x00000000	小节 25.5.5
0x14	UART_ICR	UART 中断清除寄存器	0x00000000	小节 25.5.6
0x18	UART_GCR	UART 全局控制寄存器	0x00000000	小节 25.5.7
0x1C	UART_CCR	UART 通用控制寄存器	0x00000030	小节 25.5.8
0x20	UART_BRR	UART 波特率寄存器	0x00000001	小节 25.5.9
0x24	UART_FRA	UART 分数波特率寄存器	0x00000000	小节 25.5.10
0x28	UART_RXADDR	UART 接收地址寄存器	0x00000000	小节 25.5.11
0x2C	UART_RXMASK	UART 接收掩码寄存器	0x000000FF	小节 25.5.12
0x30	UART_SCR	UART SCR 寄存器	0x00000000	小节 25.5.13

25.5.1 UART 发送数据寄存器(UART_TDR)

偏移地址: 0x00

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Reserv	ved							TXF	REG			
								rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31 : 8	Reserved			始终读为 0。
7:0	TXREG	rw	0x00	发送数据寄存器(Transmit data register)

25.5.2 UART 接收数据寄存器(UART_RDR)

偏移地址: 0x04

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Reser	ved							RXF	REG			
								r	r	r	r	r	r	r	r

Bit	Field	Туре	Reset	Description
31 : 8	Reserved			始终读为 0。
7:0	RXREG	r	0x00	接收数据寄存器(Receive data register)
				该寄存器只读

25.5.3 UART 当前状态寄存器(UART_CSR)

偏移地址: 0x08

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Res	served						TXBUF_ EMPTY	TXFULL	RXAVL	TXC
												r	r	r	r

Bit	Field	Туре	Reset	Description
31 : 4	Reserved			始终读为0。
3	TXBUF_ EMPTY	r	0x01	发送缓冲空标识位(Transmit buffer empty flag bit) 1:发送缓冲为空 0:发送缓冲不为空
2	TXFULL	r	0x00	发送缓冲满满标志位(Transmit buffer full flag bit) 1:发送缓冲为满 0:发送缓冲不满
1	RXAVL	r	0x00	接收有效字节数据标识位(Receive valid data flag bit) 当接收缓冲接收了一个完整字节的数据时置位该位。 1:接收缓冲接收了一个完整有效的字节数据 0:接收缓冲为空

Bit	Field	Туре	Reset	Description
0	TXC	r	0x01	发送结束标识位(Transmit complete flag bit)
				1:发送缓冲和发送移位寄存器都为空
				0:发送不为空

25.5.4 UART 中断状态寄存器(UART_ISR)

偏移地址: 0x0C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Res	erved			RXB8 _INTF	TX BRK_ INTF	RX BRK_ INTF	Res.	RXP ERR_ INTF	RXO ERR_ INTF	TXC_ INTF	RX_ INTF	TX_ INTF
							r	r	r		r	r	r	r	r

		<u> </u>		
Bit	Field	Туре	Reset	Description
31 : 9	Reserved			始终读为 0。
8	RXB8_INTF	r	0x00	UART 同步帧中断标志位。在 9 位通讯模式下,当接收到到数据的第九位与寄存器 CCR.B8POL 相同时,RXB8_INT位置。该位可以作为中断请求信号1:接收到的同步帧0:没有接收到同步帧
7	TXBRK_ INTF	r	0x00	UART 断开帧发送完成中断标志位。 1:移位寄存器断开帧数据发送完成 0:移位寄存器空或正在移位发送 备注:不能连续发送断开帧。
6	RXBRK_ INTF	r	0x00	UART 接收断开帧中断标志位 (Receive frame break interrupt flag bit) 在异常停止位后 RX 引脚在一段时间内接收到 10 个或大于 10 位的低电平。 1:检测断开帧 0:没有断开帧
5	Reserved			始终读为 0。
4	RXPERR_ INTF	r	0x00	奇偶校验错误中断标志位(Parity error interrupt flag bit) 1:检测到奇偶校验错误 0:没有奇偶校验错误
3	RXOERR_ INTF	r	0x00	接收溢出错误中断标志位(Receive overflow error interrupt flag bit) 仅当 autoflowen=0 时置位。 1:接收溢出错误 0:没有溢出错误

Bit	Field	Type	Reset	Description
2	TXC_INTF	r	0x00	UART 发送移位寄存器完成中断标志位。
				1:移位寄存器数据发送完成
				0:移位寄存器空或正在移位发送
				注: 此标志位与保护时间相关
1	RX_INTF	r	0x00	接收有效数据中断标志位(Receive valid data interrupt flag
				bit)
				当接收缓冲接收了一个完整字节的数据时置位该位。
				1:接收缓冲有效字节数据
				0:接收缓冲为空
0	TX_INTF	r	0x00	发送缓冲空中断标志位(Transmit buffer empty interrupt
				flag bit)
				1: 发送缓冲空
				0: 发送缓冲不为空

25.5.5 UART 中断使能寄存器(UART_IER)

偏移地址: 0x10

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		R	eserved				RXB8 _IEN	TXBRK _IEN	RX BRK EN	Res.	RXP ERR EN	RXO ERR EN	TXC_ IEN	RXIEN	TXIEN
							rw	rw	rw		rw	rw	rw	rw	rw

e break inter-
ot enable bit)

Bit	Field	Туре	Reset	Description
3	RXOERREN	rw	0x00	接收溢出错误中断使能位(Receive overflow error interrupt
				enable bit)
				1:中断使能
				0:中断禁止
2	TXC_IEN	rw	0x00	UART 发送移位寄存器完成中断使能控制位。
				1:移位寄存器数据发送完成
				0:移位寄存器空或正在移位发送
1	RXIEN	rw	0x00	接收缓冲中断使能位(Receive buffer interrupt enable bit)
				1:中断使能
				0:中断禁止
0	TXIEN	rw	0x00	发送缓冲空中断使能位(Transmit buffer empty interrupt
				enable bit)
				1:中断使能
				0:中断禁止

25.5.6 UART 中断清除寄存器(UART_ICR)

偏移地址: 0x14

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Reser	ved			RXB8 _CLR	TXBRK _CLR	RX BRK CLR	Res.	RXP ERR CLR	RXO ERR CLR	TXC_ CLR	RXICLR	TXICLR
							W	w	W		W	W	W	W	w

Bit	Field	Туре	Reset	Description
31 : 9	Reserved			始终读为 0。
8	RXB8_CLR	W	0x00	UART 同步帧中断标志清除控制位。
				1:清除接收同步帧中断标志
				0: 无动作
7	TXBRK_CLR	W	0x00	UART 断开帧发送完成中断标志清除控制位。
				1:清除断开帧发送完成中断标志
				0: 无动作
6	RXBRKCLR	W	0x00	UART 接收断开帧中断清除位(Receive frame break inter-
				rupt clear bit)
				1:中断清除
				0:中断没有清除
5	Reserved			始终读为0。

Bit	Field	Туре	Reset	Description
4	RXPERRCLR	w	0x00	奇偶校验错误中断清除位(Parity error interrupt clear bit) 1:中断清除 0:中断没有清除
3	RXOERRCLR	W	0x00	接收溢出错误中断清除位(Receive overflow error interrupt clear bit) 1:中断清除 0:中断没有清除
2	TXC_CLR	W	0x00	UART 发送移位寄存器完成中断使能控制位。 1:清除移位寄存器数据发送完成中断标志 0:无动作
1	RXICLR	w	0x00	接收中断清除位(Receive interrupt clear bit) 1:中断清除 0:中断没有清除
0	TXICLR	W	0x00	发送缓冲空中断清除位(Transmit buffer empty interrupt clear bit) 1:中断清除 0:中断没有清除

25.5.7 UART 全局控制寄存器(UART_GCR)

偏移地址: 0x18

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	rved						TXEN	RXEN	AUTO FLOW EN	DMA MODE	UARTEN
											rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31 : 5	Reserved			始终读为 0。
4	TXEN	rw	0x00	发送使能位(Enable transmit)
				1:发送使能
				0:发送禁止。可以清除 TX BUFFER
3	RXEN	rw	0x00	接收使能位(Enable receive)
				1:接收使能
				0:接收禁止。可以清除 RX BUFFER.
2	AUTO	rw	0x00	自动流控制使能位(Automatic flow control enable bit)
	FLOWEN			1:自动流控制使能
				0:自动流控制禁止

Bit	Field	Туре	Reset	Description
1	DMAMODE	rw	0x00	DMA 方式选择位(DMA mode selection bit)
				1:选择 DMA 方式
				0:选择正常方式
0	UARTEN	rw	0x00	UART 模块选择位(UART mode selection bit)
				1: UART 模块使能
				0: UART 模块禁止

25.5.8 UART 通用控制寄存器(UART_CCR)

偏移地址: 0x1C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	erved	WAKE	RWU	B8EN	B8TOG	B8POL	B8TXD	B8RXD	SPB1	CH	IAR	BRK	SPB0	PSEL	PEN
		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31 : 14	Reserved			始终读为 0 。
13	WAKE	rw	0x00	唤醒方法。该位决定把 UART 唤醒的方法
				1: 地址标记唤醒
				0:空闲总线唤醒
				注:在把 UART 置于静默模式之前,UART 要已经接收了
				一个数据字节。否则在静默模式下,不能被空闲总线检测
				唤醒。
12	RWU	rw	0x00	接收唤醒。该位用来决定是否把 UART 置于静默模式。该
				位可以由软件设置或清除。当唤醒序列到来时,硬件也会
				自动将其清零。
				1:接收器处于静默模式
				0:接收器处于正常工作模式
				在设置地址标记唤醒时,如果接收 buffer 非空则不能软件
				修改。
11	B8EN	rw	0x00	UART 同步帧第九位使能控制位。该位使能后校验使能位
				PEN 不起作用。
				1:使能同步帧第九位发送
				0:禁止同步帧第九位发送

Bit	Field	Туре	Reset	Description
10	B8TOG	rw	0x00	UART 同步帧发送第九位自动翻转控制位。
				1:使能第九位自动翻转
				0:禁止第九位自动翻转
				注:在 B8TXD 和 B8POL 的值相同时,在配置完寄存器后
				传输的第二个数据开始翻转,第一个数据默认为地址位。
9	B8POL	rw	0x00	UART 同步帧第九位极性控制位。
				1:同步帧第九位高电平有效
				0: 同步帧第九位低电平有效
8	B8TXD	rw	0x00	UART 同步帧发送数据第九位。
				1:发送同步帧第九位为高电平
				0:发送同步帧第九位为低电平
7	B8RXD	rw	0x00	UART 同步帧接收数据第九位。只读。
				1:接收同步帧第九位为高电平
				0:接收同步帧第九位为低电平
6	SPB1	rw	0x00	停止位选择位,与 SPB0 结合设置停止位位数。
5:4	CHAR	rw	0x03	UART 数据宽度位(UART width bit)
				00: 5 位 01: 6 位
				10: 7 位 11: 8 位
3	BRK	rw	0x00	UART 发送断开帧(UART transmit frame break)
				1: 串行强制输出逻辑'0'(断开帧)
				0:禁止断开
2	SPB0	rw	0x00	停止位选择(Stop bit selection)
				设置发送停止位位数。
				SPB1, SPB0: 00, 1 个停止位
				SPB1, SPB0: 01, 2 个停止位(5 位数据位时, 不使用 SPB
				设置,停止位强制为1位)
				SPB1, SPB0: 10, 0.5 个停止位
				SPB1, SPB0: 11, 1.5 个停止位
1	PSEL	rw	0x00	校验选择位(Parity selection bit)
				当校验使能后,该位用于选择是采用偶校验还是奇校验。
				1: 偶校验
				0: 奇校验
0	PEN	rw	0x00	校验使能位(Parity enable bit)
				1: 发送接收使能校验
				0:禁止校验

25.5.9 UART 波特率寄存器(UART_BRR)

偏移地址: 0x20

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DIV_M	antissa							
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bit	Field	Type	Reset	Description
31 : 16	Reserved			始终读为 0。
15 : 0	DIV_Mantissa	rw	0x0001	UARTDIV 的整数部分 这 16 位定义了 UART 分频器除法因子(UARTDIV) 的整 数部分。 DIV_Mantissa 最小值为 4

25.5.10 UART 分数波特率寄存器(UART_FRA)

偏移地址: 0x24

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved												DIV_F	raction	
												rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31 : 4	Reserved			始终读为 0。
3:0	DIV_Fraction	rw	0x00	UARTDIV 的小数部分
				这 4 位定义了 UART 分频器除法因子 (UARTDIV) 的小数
				部分。

25.5.11 UART 接收地址寄存器(UART_RXADDR)

偏移地址: 0x28

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved										RXA	DDR			
								rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Type	Reset	Description
31 : 8	Reserved			始终读为0。
7:0	RXADDR	rw	0x00	UART 同步帧数据本机匹配地址。如果 RXMASK =0xFF 时,接收到的同步帧数据与本机匹配地址相同时,产生 RXB8_INTF。 地址 0 是广播地址,收到后都会响应。

25.5.12 UART 接收掩码寄存器(UART_RXMASK)

偏移地址: 0x2C

复位值: 0x0000 00FF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved							RXN	IASK			
								rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Type	Reset	Description
31 : 8	Reserved			始终读为 0。
7:0	RXMASK	rw	0xFF	数据位全为"0"时,接收到任何数据都产生同步帧中断请求。 如果数据位为"1", RDR 和 RXADDR 的相应位匹配时,产生同步帧中断请求。

25.5.13 UART SCR 寄存器(UART_SCR)

偏移地址: 0x30

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserve	ed	HDSE L				SCF	CNT				Res.	NACK	SCAE N	SCEN
			rw	rw	rw	rw	rw	rw	rw	rw	rw		r	rw	rw

Bit	Field	Туре	Reset	Description
31 : 13	Reserved			保留,始终读为0。
12	HDSEL	rw	0x00	单线半双工模式选择。
				1:使能半双工模式
				0:禁止半双工模式
11 : 4	SCFCNT	rw	0x00	ISO7816 保护计数器。当发送数据为在保护计数器期间内
				的低电平,禁止为下一个数据的起始位。
				0 为 16 个波特率计数时间,151 为 151 个时间
3	Reserved			保留,始终读为0。
2	NACK	r	0x00	主接收帧应答位
1	SCAEN	rw	0x00	ISO7816 校验自动应答位。
				1:使能自动应答
				0:禁止自动应答
0	SCEN	rw	0x00	ISO7816 使能控制位。
				1: 使能 ISO7816 功能
				0 : 禁止 ISO7816 功能

26

系统配置控制器 (SYSCFG)

系统配置控制器 (SYSCFG)

该芯片具有一组系统配置寄存器。这些寄存器的主要功能如下:

- 重映射部分从 TIM16 和 TIM17, UART1 和 ADC 的 DMA 触发源到其它不同的 DMA 通道上。
- 管理连接到 GPIO 口的外部中断。
- 重映射存储器到代码起始区域。
- 外部中断引脚配置

26.1 SYSCFG 寄存器描述

表 69. SYSCFG 寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	SYSCFG_CFGR	SYSCFG 配置寄存器	0x0000000X	小节 26.1.1
0x08	SYSCFG_EXTICR1	外部中断配置寄存器 1	0x00000000	小节 26.1.2
0x0C	SYSCFG_EXTICR2	外部中断配置寄存器 2	0x00000000	小节 26.1.3
0x10	SYSCFG_EXTICR3	外部中断配置寄存器 3	0x00000000	小节 26.1.4
0x14	SYSCFG_EXTICR4	外部中断配置寄存器 4	0x00000000	小节 26.1.5

26.1.1 SYSCFG 配置寄存器(SYSCFG_CFGR)

该寄存器专门用于配置内存起始区域映射和 DMA 请求重映射。具有两个可配置内存起始 0x0000 0000 地址存储区类型的控制位,这两个控制位可软件配置来屏蔽 BOOT 的选择。 复位后,这两个控制位为实际的 BOOT 模式配置。

偏移地址: 0x00

复位值: 0x0000 000X (X 为实际 BOOT 模式的选择控制位)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		TIM17 _DMA _RMP	TIM16 _DMA _RMP	UART1 _RX _DMA _RMP	UART1 _TX _DMA _RMP	ADC _DMA _RMP			Rese	erved			MEM_	MODE
			rw	rw	rw	rw	rw							rw	rw

Bit	Field	Type	Reset	Description
31 : 13	Reserved			始终读为 0。

Bit	Field	Туре	Reset	Description
12	TIM17_DMA _RMP	rw	0x00	TIM17 DMA 请求重映射位(TIM17 DMA request remapping bit) 由软件设置和清除该位。它控制着 TIM17 DMA 通道请求的重映射。 0: 无重映射(TIM17_CH1 和 TIM17_UP DMA 请求映射在 DMA 通道 1 上) 1: 重映射(TIM17_CH1 和 TIM17_UP DMA 请求映射在 DMA 通道 2 上)
11	TIM16_DMA _RMP	rw	0x00	TIM16 DMA 请求重映射位(TIM16 DMA request remapping bit) 由软件设置和清除该位。它控制着 TIM16 DMA 通道请求的重映射。 0: 无重映射(TIM16_CH1 和 TIM16_UP DMA 请求映射在 DMA 通道 3 上) 1: 重映射(TIM16_CH1 和 TIM16_UP DMA 请求映射在 DMA 通道 4 上)
10	UART1_RX _DMA_RMP	rw	0x00	UART1_RX DMA 请求重映射位(UART1_RX DMA request remapping bit) 由软件设置和清除该位。它控制着 UART1_RX DMA 通道 请求的重映射。 0: 无重映射(UART1_RX 请求映射在 DMA 通道 3 上) 1: 重映射(UART1_RX 请求映射在 DMA 通道 5 上)
9	UART1_TX _DMA_RMP	rw	0x00	UART1_TX DMA 请求重映射位(UART1_TX DMA request remapping bit) 由软件设置和清除该位。它控制着 UART1_TX DMA 通道 请求的重映射 0: 无重映射(UART1_TX 请求映射在 DMA 通道 2 上) 1: 重映射(UART1_TX 请求映射在 DMA 通道 4 上)
8	ADC_DMA _RMP	rw	0x00	ADC DMA 请求重映射位(ADC DMA request remapping bit) 由软件设置和清除该位。它控制着 ADC DMA 通道请求的 重映射 O: 无重映射(ADC DMA 请求映射在 DMA 通道 1 上) 1: 重映射(ADC DMA 请求映射在 DMA 通道 2 上)
7:2	Reserved			始终读为 0。
1:0	MEM_MODE	rw	0x00	存储映射选择位(Memory selection bit)由软件设置和清除这些位。它控制存储器内部映射到地址 0x0000 0000。当复位后这些位值由 BOOT0 的引脚配置值和 nBOOT1 bit 值决定。 x0: 主闪存存储器映射到 0x0000 0000 01: 系统闪存映射到 0x0000 0000 11: 嵌入式 RAM 映射到 0x0000 0000

26.1.2 外部中断配置寄存器 1(SYSCFG_EXTICR1)

偏移地址: 0x08

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EX	TI3			EX	TI2			EX	TI1			EX	TI0	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Type	Reset	Description
31 : 16	Reserved			始终读为 0。
15:0	EXTIX	rw	0x00	EXTIx 配置(x = 0···3)(EXTI x configuration) 这些位可用于软件读写。用于选择 EXTIx 外部中断的输入源。 0000: PA[x] 管脚 0001: PB[x] 管脚 0010: PC[x] 管脚 0011: PD[x] 管脚

26.1.3 外部中断配置寄存器 2(SYSCFG_EXTICR2)

偏移地址: 0x0C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EX	TI7			EX	TI6			EX	TI5			EX	TI4	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Type	Reset	Description
31 : 16	Reserved			始终读为 0。
15:0	EXTIX	rw	0x00	EXTIx 配置(x = 4···7)(EXTI x configuration) 这些位可用于软件读写。用于选择 EXTIx 外部中断的输入源。 0000: PA[x] 管脚 0001: PB[x] 管脚 0010: PC[x] 管脚 0011: PD[x] 管脚

26.1.4 外部中断配置寄存器 3(SYSCFG_EXTICR3)

偏移地址: 0x10

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EX	ΓΙ11			EXT	ΓΙ10			EX	TI9			EX	TI8	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit	Field	Туре	Reset	Description
31 : 16	Reserved			始终读为 0。
15:0	EXTIX	rw	0x00	EXTIx 配置(x = 8···11)(EXTI x configuration) 这些位可用于软件读写。用于选择 EXTIx 外部中断的输入 源。 0000: PA[x] 管脚 0001: PB[x] 管脚 0010: PC[x] 管脚 0011: PD[x] 管脚

26.1.5 外部中断配置寄存器 4(SYSCFG_EXTICR4)

偏移地址: 0x14

			<i>></i>			_									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EXTI15				EXT	ΓΙ14			EX	ΓΙ13			EX	TI12	
	n.	DA/	m	r) A/	r.v.	r.a.	n.v.	n.v.	na.	n.	n.v.	DA/	r.a.	r) A/	20.47

Bit	Field	Type	Reset	Description
31 : 16	Reserved			始终读为 0。
15:0	EXTIX	rw	0x00	EXTIx 配置(x = 12···15)(EXTI x configuration) 这些位可用于软件读写。用于选择 EXTIx 外部中断的输入 源。 0000: PA[x] 管脚 0001: PB[x] 管脚 0010: PC[x] 管脚 0011: PD[x] 管脚

27

器件电子签名 (Device)

器件电子签名 (Device)

电子签名存放在闪存存储器模块的系统存储区域,可以通过 JTAG、SWD 或者 CPU 读取。它所包含的芯片识别信息在出厂时编写,用户固件或者外部设备可以读取电子签名,用以自动匹配不同配置的微控制器。

27.1 存储器容量寄存器

27.1.1 产品唯一身份标识寄存器 (96 位)

产品唯一的身份标识非常合适:

- 用来作为序列号 (例如 USB 字符序列号或者其他的终端应用)。
- 用来作为密码,在编写闪存时,将此唯一标识与软件加解密算法结合使用,提高代码在 闪存存储器的安全性。
- 用来激活带安全机制的自举过程。

96 位的产品唯一身份标识所提供的参考号码对任意一个系列微控制器,在任何情况下都是唯一的。用户在何种情况下,都不能修改这个身份标识。

这个 96 位的产品唯一身份标识,按照用户不用的用法,可以以字节 (8 位) 为单位读取,也可以以半字 (16 位) 或者全字 (32 位) 读取。

27.2 UID 寄存器描述

表 70. 存储器容量寄存器描述概览

Offset	Acronym	Register Name	Reset	Section
0x00	UID1	唯一标识码	0xXXXXXXXX	小节 27.2.1
0x02	UID2	唯一标识码	0xXXXXXXXX	小节 27.2.2
0x04	UID3	唯一标识码	0xXXXXXXXX	小节 27.2.3
0x08	UID4	唯一标识码	0xXXXXXXX	小节 27.2.4

27.2.1 唯一标识码 (UID1)

基地址: 0x1FFF F7E8

地址偏移: 0x00

只读,其值在出厂时编写

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	U_ID														
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bit	Field	Туре	Reset	Description
15 :0	U_ID	r		U_ID: 唯一身份标志 15: 0 位 (15: 0 unique ID bits)
				这个域的数值也预留作为未来的其他功能。

27.2.2 唯一标识码 (UID2)

地址偏移: 0x02

只读,其值在出厂时编写

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	U_ID														
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bit	Field	Туре	Reset	Description
15 :0	U_ID	r		U_ID: 唯一身份标志 31: 16 位 (31: 16 unique ID bits)
				这个域的数值也预留作为未来的其他功能。

27.2.3 唯一标识码 (UID3)

地址偏移: 0x04

只读,其值在出厂时编写

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							U_	_ID							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	U_ID														
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bit	Field	Туре	Reset	Description
31 :0	U_ID	r		U_ID: 唯一身份标志 63: 32 位 (63: 32 unique ID bits)
				这个域的数值也预留作为未来的其他功能。

27.2.4 唯一标识码 (UID4)

地址偏移: 0x08

只读,其值在出厂时编写

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							U _.	_ID							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	U_ID														
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bit	Field	Туре	Reset	Description
31: 0	U_ID	r		U_ID: 唯一身份标志 95: 64 位 (95: 64 unique ID bits)
				这个域的数值也预留作为未来的其他功能。

28

调试支持 (DBG)

调试支持 (DBG)

28.1 概述

该系列内核内含硬件调试模块,支持复杂的调试操作。硬件调试模块允许内核在取指(指令断点)或访问数据(数据断点)时停止。内核停止时,内核的内部状态和系统的外部状态都是可以查询的。完成查询后,内核和外设可以被复原,程序将继续执行。

当该系列微控制器连接到调试器并开始调试时,调试器将使用内核的硬件调试模块进行调试操作。

支持:

• 串行调试接口

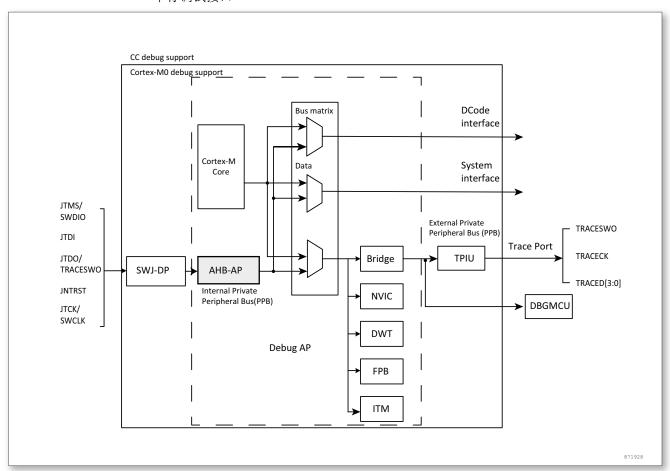


图 241. MM32 系列级别和 CPU 级别的调试框

CPU 内核提供集成的片上调试功能。它由以下部分组成:

SW-DP: 串行调试端口AHP-AP: AHB 访问端

ITM: 执行跟踪单元FPB: 闪存指令断点DWT: 数据触发TPUI: 跟踪单元接口

28.2 引脚分布和调试端口脚

该芯片微控制器的不同封装有不同的有效引脚数。因此,某些与引脚相关的功能可能随封装而不同。

28.2.1 SWD 调试端口脚

该芯片的 2 个普通 I/O 口可用作 SW-DP 接口引脚。这些引脚在所有的封装里都存在。

表 71. SWJ 调试端口管脚

SWJ-DP 端口引脚名称	SW 调	引脚分配	
910 D1 VIII D1 MAY 11 MAY	类型	调试功能	VINIOU AS
SW 调试接口	输入/输出	串行数据输入/输出	PA13
SWCLK	输入	串行时钟	PA14

28.2.2 SWD 脚上的内部上拉和下拉

保证 SWD 的输入引脚不是悬空的是非常必要的,因为他们直接连接到 D 触发器控制着调试模式。必须特别注意 SWCLK 引脚,因为他们直接连接到一些 D 触发器的时钟端。

为了避免任何未受控制的 I/O 电平,芯片在 SWD 输入脚上嵌入了内部上拉和下拉。

- SWDIO: 内部上拉
- SWCLK: 带下拉的输入

软件可以把这些 I/O 口作为普通的 I/O 口使用。

28.3 ID 代码和锁定机制

在芯片内部有多个 ID 编码。

28.3.1 微控制器设备 ID 编码

微控制器内含一个 MCU ID 编码。这个 ID 定义了 MCU 的部件号和硅片版本。它是 DBG_MCU 的一个组成部分,并且映射到外部 APB 总线上。SW 调试口(2 个引脚)或通过用户代码都可以访问此编码。

DBGMCU_IDCODE

地址: 0x40013400 只支持 32 位访问

只读 =0xXXXXXXXX, 其中 X 为内容不确定的位

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							DEV	_ID							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DEV_ID														
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
<u> </u>															
r r r r r r r r r r r r r r r r r r r							r 	r 	r	r	r 	_			

28.3.2 Cortex JEDEC-106 ID 代码

CPU 有一个 JEDEC-106 ID 编码。它位于映射到内部 APB 总线地址为 0xE00FF000_ 0xE00FFFFF 的 4KB ROM 表中。

下表是该系列的各个 ID 编码:

表 73. ID 编码

ID 名	芯片
DEV_ID	0xCC56A091
CPU TAP SW ID	0x0BB11477

28.3.3 Cortex JEDEC-106 ID 代码

CPU 有一个 JEDEC-106 ID 编码。它位于映射到内部 APB 总线地址为 0xE00FF000_ 0xE00FFFFF 的 4KB ROM 表中。

下表是该系列的各个 ID 编码:

表 74. ID 编码

ID 名	芯片
DEV_ID	0xCC568091
CPU TAP SW ID	0x0BB11477

28.4 SW 调试端口

28.4.1 SW 协议介绍

此同步串行协议使用 2 个引脚:

- SWCLK: 从主机到目标的时钟信号
- SWDIO: 双向数据信号

协议允许读写 2 个寄存器组(DPACC 和 APACC 寄存器组)。

数据位按 LSB 传输。

由于 SWDIO 为双向口,该引脚需有上拉(建议使用 100K 电阻)。

按协议每次 SWDIO 方向改变时,需插入一个转换时间。在该期间内主机和目标都不驱动此信号线。转换时间的默认值是 1 个比特,但可以通过配置 SWCLK 频率来调节。

28.4.2 SW 协议序列

每个序列由3个阶段组成:

- 主机发送包请求(8位)
- 目标发送确认相应(3位)
- 主机或目标发送数据(33位)

表 75. 请求包(8 比特位)

比特位	名称	描述				
0	起始	必须为 1				
1	APnDP	0: 访问 DP 1: 访问 AP				
2	RnW	0: 写请求 1: 读请求				
4:3	A (3: 2)	DP 或 AP 寄存器的地址				
5	Parity	前面比特位的校验位				
6	Stop	0				
7	Park	不能由主机驱动,由于有上拉,目标永远读为 1				

有关 DPACC 和 APACC 寄存器描述的详细资料,请参考 CPU 技术参考手册。 包请求后总是跟一个(缺省为1位)转换时间,此时主机和目标都不驱动线路。

表 76. 请求包(3比特位)

比特位	名称	描述
		001: 失败
02	ACK	010: 等待
		100: 成功

当 ACK 为失败或等待,或者是一个回复读操作的 ACK,此 ACK 后有一个转换时间。

表 77. 请求包(33 比特位)

比特位 名称		描述				
031	WDATA/RDATA	写或读的数据				
32	Parity	32 位数据的奇偶校验位				

读操作的数据传输操作后有一个转换时间。

28.4.3 SW-DP 状态机(Reset, idle states, ID code)

SW-DP 状态机有一个内部 ID 编码用来识别 SW-DP, 它遵守 JEP-106 标准。 在调试器读这个 ID 编码之前, SW-DP 的状态机是不工作的。

• SW-DP 状态机将处于 RESET 状态,在上电复位后,或 DP 切换到 SWD 后,或有超过

50 个周期的高电平。

- 当状态机处于 RESET 状态时,如果有至少 2 个周期的低电平,状态机将切换到 IDLE 状态。
- 当状态机处于 RESET 状态后,必须首先进入 IDLE 状态,并执行一个读 DP-SW ID 寄存器的操作。否则,调试器在执行其他传输时,只能获得一个失败的 ACK 响应。

28.4.4 DP 和 AP 读/写访问

- 对 DP 的读操作没有传递性:调试器将直接获得数据(如果 ACK = 成功),或者等待(如果 ACK = 等待)。
- 对 AP 的读操作具有传递性。这意味着前一次读操作的结果只能在下一次操作时获得。如果下一次的操作不是对 AP 的访问,则必须读 DP-RDBUFF 寄存器来获得上一次读操作的结果。
- DP-CTRL/STAT 寄存器的 READOK 标志位会在每次 AP 读操作和 RDBUFF 读操作后 更新,以通知调试器 AP 的读操作是否成功。
- SW-DP 具有写缓冲区 (DP 和 AP 都有写缓冲),这使得其他传输在进行时,仍然可以接受写操作。如果写缓冲区满,调试器将获得一个等待的 ACK 响应。读 IDCODE 寄存器,读 CTRL/STAT 寄存器和写 ABORT 寄存器操作在写缓冲区满时仍被接受。
- 由于 SWCLK 和 HCLK 的异步性,需要在写操作后(在奇偶校验位后)插入 2 个额外的 SWCLK 周期,以确保内部写操作正确完成。这两个额外的时钟周期需要在线路为低时 插入(IDLE 状态下)。这个操作步骤在写 CTRL/STAT 寄存器以提出一个上电请求时尤 其重要,否则下一个操作(在内核上电后才有效的操作)会立即执行,这将导致失败。

28.4.5 SW-DP 寄存器

当 APnDP=0 时,可以访问以下这些寄存器。

A (3: 2)	读/写	SELECT 寄存器 的 CTRLSEL 位	寄存器	描述		
00	 读	的CIRLSEL位	IDCODE	 固定为 0x1BA0 1477(用于识别 SW-DP)。		
				回走內 UXTBAU 1477(用] 協剂 SW-DF7。		
00	写		ABORT			
				请求一个系统或调试的上电操作;		
01			DP-	配置 AP 访问的操作模式;		
UI	读/写 	0	CTRL/STAT	控制比较,校验操作;		
				读取一些状态位(溢出,上电响应)。		
0.4	生/定		WIRE CON-	配置串行通信物理层协议(如转换时间长度等)。		
01	读 <i>l</i> 写 	1	TROL			
40	法		READ RE-	允许从一个错误的调试传输中恢复数据而不用重复最初的		
10	读 		SEND	AP 传输。		
10	写		SELECT	选择当前的访问端口和有效的 4 字长寄存器窗口。		
				由于 AP 的访问具有传递性(当前 AP 读操作的结果会在		
11	 读/写		READ	下次 AP 传输时传出),因此这个寄存器非常必要。这个寄		
11	以1月		BUFFER	存器会从 AP 捕获上一次读操作的数据结果,因此可以获		
				得数据而不必再启动一个新的 AP 传输。		

28.4.6 SW-AP 寄存器

当 APnDP=1 时,可以访问

AP 寄存器的访问地址由以下两部分组成:

- A[3: 2] 的值
- DP SELECT 寄存器的当前值

28.5 MCU 调试模块(MCUDBG)

MCU 调试模块协助调试器提供以下功能:

- 低功耗模式
- 在断点时提供定时器,看门狗的时钟控制
- 对跟踪脚分配的控制

28.5.1 低功耗模式的调试支持

使用 WFI 和 WFE 可以进入低功耗模式。MCU 支持多种低功耗模式,分别可以关闭 CPU 时钟,或降低 CPU 的能耗。内核不允许在调试期间关闭 FCLK 或 HCLK。这些时钟对于调试操作是必要的,因此在调试期间,它们必须工作。MCU 使用一种特殊的方式,允许用户在低功耗模式下调试代码。

为实现这一功能,调试器必须先设置一些配置寄存器来改变低功耗模式的特性。

- 在睡眠模式下,调试器必须先置位 DBGMCU_CR 寄存器的 DBG_SLEEP 位。这将为 HCLK 提供与 FCLK(由代码配置的系统时钟)相同的时钟。
- 停机模式下,调试器必须先置位 DBG_STOP 位。这将激活内部振荡器,在停机模式下为 FCLK 和 HCLK 提供时钟。

28.5.2 支持定时器、看门狗

在产生断点时,有必要根据定时器和看门狗的不同用途选择计数器的工作模式:

- 在产生断点时, 计数器继续计数。这在输出 PWM 控制电机时常常要用到。
- 在产生断点时, 计数器停止计数。这对于看门狗的计数器是必需的。

28.5.3 调试 MCU 配置寄存器

此寄存器允许在调试状态下配置 MCU。包括:

- 支持低功耗模式
- 支持定时器和看门狗的计数器
- 分配跟踪引脚

DBGMCU_CR 寄存器被映射到外部 APB 总线,基地址为 0x4001 3404。寄存器由 PORE-SET 异步复位(不被系统复位所复位)。当内核处于复位状态下时,调试器可写该寄存器。如果调试器不支持这些特性,用户软件仍可写这些寄存器。

28.6 DBG 寄存器描述

表 79. DBG 寄存器概览

Offset	Acronym	Register Name	Reset	Section
0x00	DBG	DBG 控制寄存器	0x00000000	小节 28.6.1

28.6.1 DBG 控制寄存器 (DBG_CR)

地址: 0x40013404 只支持 32 位访问

POR 复位: 0x0000 0000 (不被系统复位所复位)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reser	ved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	rved	DBG_TIMx_STOP			ТОР	DBG_ WWDG _STOP	DBG_ IWDG _STOP	Reserved				DBG_ STAN DBY	DBG_ STOP	DBG_ SLEEP	
-	-	W	W	W	W	W	W						W	W	W

Bit	Field	Туре	Reset	Description
31:14	Reserved			始终读为 0。
13:10	DBG_TIMx_ STOP	W	0x00	当内核进入调试状态时计数器停止工作 x = 41 (TIMx counter stopped when core is halted) 0: 选中定时器的计数器仍然正常工作
				1: 选中定时器的计数器停止工作
9	DBG_WWDG_ STOP	W	0x00	当内核进入调试状态时调试窗口看门狗停止工作(Debug window watchdog stopped when core is halted) 0:窗口看门狗计数器仍然正常工作 1:窗口看门狗计数器停止工作
8	DBG_IWDG_ STOP	W	0x00	当内核进入调试状态时看门狗停止工作(Debug independent watchdog stopped when core is halted) 0: 看门狗计数器仍然正常工作 1: 看门狗计数器停止工作
7:3	Reserved			始终读为 0。
2	DBG_STAN DBY	W	0x00	调试待机模式(Debug Standby mode) 0: (FCLK 关, HCLK 关)整个数字电路部分都断电。从软件的观点看,退出 STANDBY 模式与复位是一样的(除了一些状态位指示了微控制器刚从 STANDBY 状态退出)par 1: (FCLK 开, HCLK 开)数字电路部分不下电,FCLK 和HCLK 时钟由内部 RL 振荡器提供时钟。另外,微控制器通过产生系统复位来退出 STANDBY 模式和复位是一样的。

Bit	Field	Туре	Reset	Description
1	DBG_STOP	W	0x00	调试停机模式(Debug Stop mode) 0:(FCLK 关,HCLK 关)在停机模式时,时钟控制器禁止一切时钟(包括 HCLK 和 FCLK)。当从 STOP 模式退出时,时钟的配置和复位之后的配置一样(微控制器由 8MHz的内部振荡器(HSI)提供时钟)。因此,软件必须重新配置时钟控制系统启动 PLL,晶振等。 1:(FCLK 开,HCLK 开)在停机模式时,FCLK 和 HCLK时钟由内部振荡器提供。当退出停机模式时,软件必须重新配置时钟系统启动 PLL,晶振等(与配置此比特位为 0 时的操作一样)。
0	DBG_SLEEP	W	0x00	调试睡眠模式(Debug Sleep mode) 0: (FCLK 开, HCLK 关) 在睡眠模式时, FCLK 由原先已配置好的系统时钟提供, HCLK 则关闭。由于睡眠模式不会复位已配置好的时钟系统, 因此从睡眠模式退出时, 软件不需要重新配置时钟系统。 1: (FCLK 开, HCLK 开) 在睡眠模式时, FCLK 和 HCLK时钟都由原先配置好的系统时钟提供。

29

修改记录

修改记录

表 80. 修改记录

日期	版本	内容				
2019/09/20	Rev1.19	修改比较器参数				
2019/08/06	Rev1.18	修改存储器和总线架构处笔误				
2019/07/23	Rev1.17	SPI_EXTCTL 仅当 DW8_32 位为'0'时有效				
2019/07/16	Rev1.16	UART BRR 寄存器最小值为 4				
2019/07/09	Rev1.15	修改比较器模式参数描述				
2019/07/03	Rev1.14	修改高级定时器中的捕获/比较寄存器5描述错误,				
2019/07/03	Nev1.14	将 CCMR5 修改成 CCMR3				
		修改端口模式配置				
2019/05/09	Rev1.13	高级定时器中的刹车和死区寄存器 BDTR 的死区发				
		生器设置位 DTG 纠正				
2019/04/16	Rev1.12	修改 adc 计算公式				
2019/04/11	Rev1.11	修改 PWR				
2019/01/17	Rev1.10	添加 RCC 寄存器描述以及删除 PWM 模块				
2019/01/10	Rev1.09	修改 PWR 描述				
		TIM14 修改图片 565511,删除部分多余内容。				
		TIMX_16bit 功能描述部分输入捕获小节中将				
		"TIMx_CCR1 寄存器中的 CC1S = 01"修改为				
		"TIMx_CCMR1 寄存器中的 CC1S = 01"。				
		TIM1/8 将文中的"捕捉"都替换为"捕获"。				
2018/12/22	Rev1.09	TIM1/8 功能描述部分输入捕获小节中将				
		"TIMx_CCR1 寄存器中的 CC1S = 01" 修改				
		为 "TIMx_CCMR1 寄存器中的 CC1S=01"。				
		TIM1/8 TIMx 定时器和外部触发的同步部分将错误				
		的书写"IMx_CR1"修改为"TIMx_CR1"。				
		UART_BRR 中 DIV_Mantiss 不能为 0。				
2018/12/20	Rev1.08	UART_CSR 修改为 UART 当前状态寄存器				